Skip to main content
Log in

Theoretical Studies of Solvent Effect on the Structure, Вonding, and Spectroscopic Рroperties (IR, NMR) in the cis-[Pt(PH3)2(NCS)2] and [Pt(PH3)2(SCN)2] Linkage Isomers

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The present investigation explores the stability of linkage isomers of cis-[Pt(PH3)2(NCS)2] and [Pt(PH3)2(SCN)2] by the use of MPW1PW91 quantum method. The polarity of solvent effect on dipole moment, structural parameters, and electronic properties, spectroscopic properties (IR and NMR) was studied. The selected vibrations of IR-active in different solvents were obtained and correlated with Kirkwood–Bauer–Magat equation (KBM). The d-orbitals energies of platinum were calculated by NBO analysis. It was seen good correlation were obtained between 195Pt chemical shifts and the spectral parameters obtained from the energies of electronic transitions between Pt d-orbitals in the cis-[Pt(PH3)2(NCS)2] complex. Also, 1J(Pt–N) values were correlated with Pt–N distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives, Ed. by A. A. Newman (Academic, New York, 1975).

    Google Scholar 

  2. Chemistry of Pseudohalides, Ed. by A. M. Golub, H. Köhler, and V. V. Skopenko (Elsevier, Amsterdam, 1986).

    Google Scholar 

  3. R. A. Bailey, S. L. Kozak, T. W. Michelsen, and W. N. Mills, Coord. Chem. Rev., 6 (1971).

  4. J. L. Burmeister, Coord. Chem. Rev. 105, 77 (1990).

    Article  CAS  Google Scholar 

  5. A. Hazari, L. K. Das, A. Bauzá, A. Fronter, and A. Ghosh, Dalton Trans. 43, 8007 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. L. Vandenburgh, M. R. Buck, and D. A. Freedman, Inorg. Chem. 47, 9134 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. A. R. Khan, S. M. Socol, D. W. Meek, and R. Yasmeen, Inorg. Chim. Acta 234, 109 (1995).

    Article  CAS  Google Scholar 

  8. L. A. Epps and L. G. Marzilli, J. Chem. Soc., Chem. Commun., 109 (1972).

  9. M. J. Maroney, E. O. Fey, D. A. Baldwin, R. E. Stenkamp, L. H. Jensen, and N. J. Rose, Inorg. Chem. 25, 1409 (1986).

    Article  CAS  Google Scholar 

  10. J. L. Burmeister, Coord. Chem. Rev. 1, 205 (1966).

    Article  CAS  Google Scholar 

  11. H. B. Gray and D. F. Gutterman, J. Am. Chem. Soc. 93, 3364 (1971).

    Article  CAS  Google Scholar 

  12. A. F. Berndt and K. W. Barnet, J. Organomet. Chem. 184, 211 (1980).

    Article  CAS  Google Scholar 

  13. T. E. Sloan and A. Wojcicki, Inorg. Chem. 7, 1268 (1968).

    Article  CAS  Google Scholar 

  14. T. P. Brewster, W. Ding, N. D. Schley, N. Hazari, V. S. Batista, and R. H. Crabtree, Inorg. Chem. 50, 11938 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. G. J. Palenik, W. L. Steffen, M. Mathew, M. Li, and D. W. Meek, Inorg. Nucl. Chem. Lett. 10, 125 (1974).

    Article  CAS  Google Scholar 

  16. F. Basoto, W. H. Baddley, and J. L. Burmeister, Inorg. Chem. 3, 1202 (1964).

    Article  Google Scholar 

  17. R. G. Pearson, Inorg. Chem. 12, 1712 (1973).

    Article  Google Scholar 

  18. C. K. Jdrgensen, Inorg. Chem. 3, 1201 (1964).

    Article  Google Scholar 

  19. J. L. Burmeister, The Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives (Academic, London, 1975).

    Google Scholar 

  20. J. E. Huheey and S. O. Grim, Inrog. Nucl. Chem. Lett. 10, 973 (1974).

    Article  CAS  Google Scholar 

  21. J. L. Burmeister, Coord. Chem. Rev. 3, 225 (1968).

    Article  CAS  Google Scholar 

  22. J. L. Burmeister, Coord. Chem. Rev. 1, 205 (1966).

    Article  CAS  Google Scholar 

  23. G. Baran and G. J. Palenik, Chem. Commun., 1354 (1970).

  24. C. P. Cheng, T. L. Brown, W. C. Fultz, and I. L. Burmeister, Chem. Commun., 599 (1977).

  25. W. Howart, R. E. Richards, and L. M. Venanzi, J. Chem. Soc., 3335 (1964).

  26. A. J. Carty and S. E. Jacobson, Chem. Commun., 175 (1975).

  27. P. S. Pregosin, H. Streirt, and L. M. Venanzi, Inorg. Chim. Acta 38, 237 (1980).

    Article  CAS  Google Scholar 

  28. C. Buda, A. B. Kazi, A. Dinescu, and T. R. Cundari, J. Chem. Inf. Model. 45, 965 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. S. Ghosh, G. K. Chaitanya, and K. Bhanuprakash, Inorg. Chem. 45, 7600 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. F. Zafarniya, R. Ghiasi, and S. Jameh-Bozorghi, Phys. Chem. Liq. 55, 444 (2016).

    Article  CAS  Google Scholar 

  31. C.-H. Hsieh, S. M. Brothers, J. H. Reibenspies, M. B. Hall, C. V. Popescu, and M. Y. Darensbourg, Inorg. Chem. 52, 2119 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. X.-Y. Hu, Z.-J. Liu, and J.-K. Feng, Chin. J. Chem. 25, 1370 (2007).

    Article  CAS  Google Scholar 

  33. N. S. Panina and M. Calligaris, Inorg. Chim. Acta 334, 165 (2002).

    Article  CAS  Google Scholar 

  34. R. Ghiasi and E. E. Mokarram, Russ. J. Phys. Chem A 85, 1174 (2011).

    Article  CAS  Google Scholar 

  35. M. Kato, T. Takayanagi, T. Fujihara, and A. Nagasawa, Inorg. Chim. Acta 362, 1199 (2009).

    Article  CAS  Google Scholar 

  36. O. V. Sizova, V. V. Sizov, and V. I. Baranovski, J. Mol. Struct.: THEOCHEM 683, 97 (2004).

    Article  CAS  Google Scholar 

  37. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

  38. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  CAS  Google Scholar 

  39. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).

    Article  CAS  Google Scholar 

  40. P. J. Hay, J. Chem. Phys. 66, 4377 (1977).

    Article  CAS  Google Scholar 

  41. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  42. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).

    Article  CAS  Google Scholar 

  44. M. Cossi, V. Barone, B. Mennucci, and J. Tomasi, Chem. Phys. Lett. 286, 253 (1998).

    Article  CAS  Google Scholar 

  45. B. Mennucci and J. Tomasi, J. Chem. Phys. 106, 5151 (1997).

    Article  CAS  Google Scholar 

  46. M. T. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032 (1997).

    Article  Google Scholar 

  47. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  48. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem. 29, 8395 (2008).

    Google Scholar 

  49. K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990).

    Article  CAS  Google Scholar 

  50. C. Buda, A. B. Kazi, A. Dinescu, and T. R. Cundari, J. Chem. Inf. Model. 45, 965 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, 4th ed. (Wiley-VCH, Weinheim, 2011).

    Google Scholar 

  52. W. West and R. T. Edwards, J. Chem. Phys. 5, 14 (1937).

    Article  CAS  Google Scholar 

  53. E. Bauer and M. Magat, J. Phys. Radium 9, 319 (1938).

    Article  CAS  Google Scholar 

  54. N. F. Ramsey, Phys. Rev. 91, 303 (1953).

    Article  CAS  Google Scholar 

  55. T. Helgaker, M. Jaszunski, and K. Ruud, Chem. Rev. 99, 293 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. S. P. A. Sauer, Molecular Electromagnetism, A Computational Chemistry Approach (Oxford Univ. Press, Oxford, 2011).

    Book  Google Scholar 

  57. L. B. Krivdin and R. H. Contreras, Ann. Rep. NMR Spectrosc. 61, 133 (2007).

    Article  CAS  Google Scholar 

  58. J. Vaara, Phys. Chem. Chem. Phys. 9, 5399 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. T. Helgaker, M. Jaszunski, and M. Pecul, Prog. Nucl. Magn. Reson. Spectrosc. 53, 249 (2008).

    Article  CAS  Google Scholar 

  60. P. F. Provasi, M. C. Caputo, S. P. A. Sauer, I. Alkorta, and J. Elguero, Comput. Theor. Chem. 998, 98 (2012).

    Article  CAS  Google Scholar 

  61. M. Hashemi, Spectrochim. Acta, Part A 151, 438 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemeh Rezaeani, Ghiasi, R. & Yousefi, M. Theoretical Studies of Solvent Effect on the Structure, Вonding, and Spectroscopic Рroperties (IR, NMR) in the cis-[Pt(PH3)2(NCS)2] and [Pt(PH3)2(SCN)2] Linkage Isomers. Russ. J. Phys. Chem. 92, 1748–1756 (2018). https://doi.org/10.1134/S0036024418090224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418090224

Keyword:

Navigation