Abstract
Nanosized NiO particles were synthesized by a combined solvothermal-calcination process using Ni(NO3)2 · 6H2O as a starting reagent in the presence of ethylene glycol. The effect of varying the calcination temperature from 500 to 700°C on crystallinity and particle size of the synthesized NiO nanoparticles was investigated. The crystallinity and particle size of the NiO nanoparticles increased with increasing calcination temperatures. The particle size–photocatalytic activity relationship of the synthesized NiO nanoparticles was investigated. It was found that the NiO with smaller particle size and larger surface area shows strong UV–Vis absorption. The NiO nanoparticles calcined at 500°C degraded Congo red under the xenon light better than those calcined at higher temperatures.
Similar content being viewed by others
REFERENCES
V. V. Kondalkar, P. B. Patil, R. M. Mane, P. S. Patil, S. Choudhury, and P. N. Bhosal, Macromol. Symp. 361, 47 (2016).
Y. Lu, Y. H. Ma, S. Y. Ma, W. X. Jin, S. H. Yan, X. L. Xu, and Q. Chen, Mater. Lett. 190, 252 (2017).
Q. Dong, S. Yin, C. Guo, X. Wu, N. Kumada, T. Takei, A. Miura, Y. Yonesaki, and T. Sato, Appl. Catal., B 147, 741 (2014).
A. J. Christy and M. Umadevi, Mater. Res. Bull. 48, 4248 (2013).
D. Dey, S. Das, M. Patra, N. Kole, and B. Biswas, J. Org. Inorg. Chem. 1, 1 (2015).
X. Wan, M. Yuan, S. Tie, and S. Lan, Appl. Surf. Sci. 277, 40 (2013).
K. Byrappa and T. Adschiri, Prog. Cryst. Growth Chem. 53, 117 (2007).
J. G. Speight, Lange’s Handbook of Chemistry, 16th ed. (McGraw-Hill, New York, 2005).
G. Demazeau, Z. Naturforsch., B 65, 999 (2014).
M. Muruganandham, R. P. S. Suri, M. Sillanpää, G. Lee, and J. J. Wu, Electron. Mater. Lett. 12, 693 (2016).
E. V. Sokovykh, L. P. Oleksenko, N. P. Maksymovych, I. P. Matushko, and J. Therm. Anal. Calorim. 121, 1159 (2015).
Y. Khan, S. K. Durrani, M. Mehmood, A. Jan, and M. A. Abbasi, Mater. Chem. Phys. 130, 1169 (2011).
E. G. C. Neiva, M. O. Oliveira, M. F. Bergamini, L. H. Marcolino, and A. J. G. Zarbin, Sci. Rep. 6, 1 (2016).
D. Xia, H. Chen, J. Jiang, L. Zhang, Y. Zhao, D. Guo, and J. Yu, Electrochim. Acta 156, 108 (2015).
P. Laurence, J. Noureddine, and F. Fernand, Chem. Mater. 12, 3123 (2000).
V. Prevot, C. Forano, and J. P. Besse, Chem. Mater. 17, 6695 (2005).
A. Al-Hajry, A. Umar, M. Vaseem, M. S. Al-Assiri, F. El-Tantawy, M. Bououdina, S. Al-Heniti, and Y. B. Hahn, Superlatt. Microstruct. 44, 216 (2008).
ACKNOWLEDGMENTS
This research was financially supported by the Thailand Research Fund (TRF) (Grant number MRG6080270), the Center of Excellence (CoE) in Materials Science and Technology, and the Chiang Mai University (CMU) Junior Research Fellowship Program.
Author information
Authors and Affiliations
Corresponding author
Additional information
1The article is published in the original.
Rights and permissions
About this article
Cite this article
Pranwadee Kaewmuang, Thongtem, T., Thongtem, S. et al. Influence of Calcination Temperature on Particle Size and Photocatalytic Activity of Nanosized NiO Powder. Russ. J. Phys. Chem. 92, 1777–1781 (2018). https://doi.org/10.1134/S003602441809011X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S003602441809011X