Skip to main content
Log in

Influence of Calcination Temperature on Particle Size and Photocatalytic Activity of Nanosized NiO Powder

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Nanosized NiO particles were synthesized by a combined solvothermal-calcination process using Ni(NO3)2 · 6H2O as a starting reagent in the presence of ethylene glycol. The effect of varying the calcination temperature from 500 to 700°C on crystallinity and particle size of the synthesized NiO nanoparticles was investigated. The crystallinity and particle size of the NiO nanoparticles increased with increasing calcination temperatures. The particle size–photocatalytic activity relationship of the synthesized NiO nanoparticles was investigated. It was found that the NiO with smaller particle size and larger surface area shows strong UV–Vis absorption. The NiO nanoparticles calcined at 500°C degraded Congo red under the xenon light better than those calcined at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. V. Kondalkar, P. B. Patil, R. M. Mane, P. S. Patil, S. Choudhury, and P. N. Bhosal, Macromol. Symp. 361, 47 (2016).

    Article  CAS  Google Scholar 

  2. Y. Lu, Y. H. Ma, S. Y. Ma, W. X. Jin, S. H. Yan, X. L. Xu, and Q. Chen, Mater. Lett. 190, 252 (2017).

    Article  CAS  Google Scholar 

  3. Q. Dong, S. Yin, C. Guo, X. Wu, N. Kumada, T. Takei, A. Miura, Y. Yonesaki, and T. Sato, Appl. Catal., B 147, 741 (2014).

    Article  CAS  Google Scholar 

  4. A. J. Christy and M. Umadevi, Mater. Res. Bull. 48, 4248 (2013).

    Article  CAS  Google Scholar 

  5. D. Dey, S. Das, M. Patra, N. Kole, and B. Biswas, J. Org. Inorg. Chem. 1, 1 (2015).

    Google Scholar 

  6. X. Wan, M. Yuan, S. Tie, and S. Lan, Appl. Surf. Sci. 277, 40 (2013).

    Article  CAS  Google Scholar 

  7. K. Byrappa and T. Adschiri, Prog. Cryst. Growth Chem. 53, 117 (2007).

    Article  CAS  Google Scholar 

  8. J. G. Speight, Lange’s Handbook of Chemistry, 16th ed. (McGraw-Hill, New York, 2005).

    Google Scholar 

  9. G. Demazeau, Z. Naturforsch., B 65, 999 (2014).

  10. M. Muruganandham, R. P. S. Suri, M. Sillanpää, G. Lee, and J. J. Wu, Electron. Mater. Lett. 12, 693 (2016).

    Article  CAS  Google Scholar 

  11. E. V. Sokovykh, L. P. Oleksenko, N. P. Maksymovych, I. P. Matushko, and J. Therm. Anal. Calorim. 121, 1159 (2015).

    Article  CAS  Google Scholar 

  12. Y. Khan, S. K. Durrani, M. Mehmood, A. Jan, and M. A. Abbasi, Mater. Chem. Phys. 130, 1169 (2011).

    Article  CAS  Google Scholar 

  13. E. G. C. Neiva, M. O. Oliveira, M. F. Bergamini, L. H. Marcolino, and A. J. G. Zarbin, Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  14. D. Xia, H. Chen, J. Jiang, L. Zhang, Y. Zhao, D. Guo, and J. Yu, Electrochim. Acta 156, 108 (2015).

    Article  CAS  Google Scholar 

  15. P. Laurence, J. Noureddine, and F. Fernand, Chem. Mater. 12, 3123 (2000).

    Article  CAS  Google Scholar 

  16. V. Prevot, C. Forano, and J. P. Besse, Chem. Mater. 17, 6695 (2005).

    Article  CAS  Google Scholar 

  17. A. Al-Hajry, A. Umar, M. Vaseem, M. S. Al-Assiri, F. El-Tantawy, M. Bououdina, S. Al-Heniti, and Y. B. Hahn, Superlatt. Microstruct. 44, 216 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was financially supported by the Thailand Research Fund (TRF) (Grant number MRG6080270), the Center of Excellence (CoE) in Materials Science and Technology, and the Chiang Mai University (CMU) Junior Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulawan Kaowphong.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pranwadee Kaewmuang, Thongtem, T., Thongtem, S. et al. Influence of Calcination Temperature on Particle Size and Photocatalytic Activity of Nanosized NiO Powder. Russ. J. Phys. Chem. 92, 1777–1781 (2018). https://doi.org/10.1134/S003602441809011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441809011X

Keywords:

Navigation