Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 918–921 | Cite as

Phase Diagram of the Ethylene Glycol–Dimethylsulfoxide System

  • I. A. Solonina
  • M. N. Rodnikova
  • M. R. Kiselev
  • A. V. Khoroshilov
  • E. V. Shirokova
Physical Chemistry of Solutions

Abstract

The phase diagram of ethylene glycol (EG)–dimethylsulfoxide (DMSO) system is studied in the temperature range of +25 to −140°C via differential scanning calorimetry. It is established that the EG–DMSO system is characterized by strong overcooling of the liquid phase, a glass transition at −125°C, and the formation of a compound with the composition of DMSO · 2EG. This composition has a melting temperature of −60°C, which is close to those of neighboring eutectics (−75 and −70°C). A drop in the baseline was observed in the temperature range of 8 to −5°C at DMSO concentrations of 5–50 mol %, indicating the existence of a phase separation area in the investigated system. The obtained data is compared to the literature data on the H2O–DMSO phase diagram.

Keywords

ethylene glycol–dimethylsulfoxide system phase diagram differential scanning calorimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Yan, M. Wang, Y. Lu, et al., J. Solid State Electrochem. 18, 1087 (2014). doi 10.1007/s10008-013-2361-3CrossRefGoogle Scholar
  2. 2.
    M. N. Rodnikova, Zh. Fiz. Khim. 67, 275 (1993).Google Scholar
  3. 3.
    D. Martin, A. Weise, and H.-J. Niclas, J. Angew. Chem., Int. Engl. Ed. 6, 318 (1967).CrossRefGoogle Scholar
  4. 4.
    D. Martin and H. G. Hanthal, Dimethyl Sulfoxide (Wiley, New York, 1975).Google Scholar
  5. 5.
    L. Slade and H. Levine, Crit. Rev. Food Sci. Nutrit. 30, 115 (1991).CrossRefGoogle Scholar
  6. 6.
    M. P. Buera, Y. Roos, H. Levine, et al., Pure Appl. Chem. 83, 1567 (2011). doi 10.1351/PAC-REP-10-07-02CrossRefGoogle Scholar
  7. 7.
    J. S. Clegg, Comp. Biochem. Physiol. B 128, 613 (2001).CrossRefGoogle Scholar
  8. 8.
    E. Shalaev and F. Franks, in Amorphous Food and Pharmaceutical Systems, Ed. by H. Levine (RSC, Cambridge, UK, 2002), p.200.Google Scholar
  9. 9.
    D. H. Rasmussen, Nature (London, U. K.) 220, 1315 (1968).CrossRefGoogle Scholar
  10. 10.
    Aldrich Catalogue Handbook of Fine Chemicals (Aldrich, 1989).Google Scholar
  11. 11.
    O. Ya. Osipov, V. I. Minkin, and A. D. Granovskii, Handbook on Dipole Moments (Vysshaya Shkola, Moscow, 1971) [in Russian].Google Scholar
  12. 12.
    CRC Handbook of Chemical Physics, 74th ed. (CRC, Boca Raton, FL, 1993–1994).Google Scholar
  13. 13.
    W. Ch. Landolt-Bornstein, Group IV Physical Chemistry, Ed. by M. D. Lechner (Springer, Berlin, Heidelberg, 2009), Vol. 25. doi 10.1007/978-3-540-75486-2Google Scholar
  14. 14.
    G. I. Egorov and D. M. Makarov, Russ. J. Phys. Chem. A 82, 1778 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Solonina
    • 1
  • M. N. Rodnikova
    • 1
  • M. R. Kiselev
    • 2
  • A. V. Khoroshilov
    • 1
  • E. V. Shirokova
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia

Personalised recommendations