Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 900–904 | Cite as

Thermochemistry of the Dissolution of Dipeptides Containing DL-α-Alanine in Aqueous Solutions of Sodium Dodecyl Sulfate at 298.15 K

  • V. I. Smirnov
  • V. G. Badelin
Physical Chemistry of Solutions
  • 13 Downloads

Abstract

Enthalpies of the dissolution of DL-α-alanylglycine (AlaGly), DL-α-alanyl-DL-α-alanine (AlaAla), DL-α-alanyl-DL-α-valine (AlaVal), and DL-α-alanyl-DL-norleucine (AlaNln) in an aqueous solution of sodium dodecyl sulfate (SDS) at SDS concentration of m = 0–0.07 mol kg−1 and temperature Т = 298.15 K are measured via calorimetry. The standard values of the enthalpy of dissolution (ΔsolH m ) and the transfer of dipeptides (ΔtrH m ) from water to aqueous SDS solutions are calculated using the experimental data. The dependences of ΔsolH m and ΔtrH m the SDS concentration at a constant concentration of dipeptide are established. Thermochemical characteristics of the transfer of AlaGly, AlaAla, AlaVal, and AlaNln in the investigated range of SDS concentrations are compared. The results are interpreted by considering ion–ion, ion–polar, and hydrophobic–hydrophobic interactions between SDS and dipeptide molecules.

Keywords

peptides enthalpy of dissolution sodium dodecyl sulfate ternary mixtures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Singh, A. Kundu, and N. Kishore, J. Chem. Thermodyn. 36, 7 (2004).CrossRefGoogle Scholar
  2. 2.
    Z. Yan, Yu. Li, X. Wang, J. Dan, and J. Wang, J. Mol. Liq. 161, 49 (2011).CrossRefGoogle Scholar
  3. 3.
    N. G. Harutyunyan, L. R. Harutyunyan, and R. S. Harutyunyan, Thermochim. Acta 498, 124 (2010).CrossRefGoogle Scholar
  4. 4.
    S. Shirzad and R. Sadeghi, Fluid Phase Equilib. 377, 1 (2014).CrossRefGoogle Scholar
  5. 5.
    M. S. Hossain, T. K. Biswas, D. C. Kabiraz, Md. N. Islam, and M. E. Huque, J. Chem. Thermodyn. 71, 6 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Ali and H. N. Ansari, J. Surf. Detergents 13, 441 (2010).CrossRefGoogle Scholar
  7. 7.
    U. Magotra, G. V. Sandarve, and M. Sharma, J. Chem. Pharm. Res. 6, 809 (2014).Google Scholar
  8. 8.
    Shuangyan Wu, Zhenning Yan, Xiangli Wen, Cuiying Xu, and Pan Qi, Colloid Polym. 292, 2775 (2014).CrossRefGoogle Scholar
  9. 9.
    V. S. Kuznetsov, N. V. Usol’tseva, V. V. Bykova, V. P. Zherdev, and G. A. Anan’eva, Colloid J. 67, 641 (2005).CrossRefGoogle Scholar
  10. 10.
    V. I. Smirnov and V. G. Badelin, Russ. J. Phys. Chem. A 91, 1681 (2017).CrossRefGoogle Scholar
  11. 11.
    V. G. Badelin, E. Yu. Tyunina, and I. N. Mezhevoi, Russ. J. Appl. Chem 80, 711 (2007).CrossRefGoogle Scholar
  12. 12.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 606, 41 (2015).CrossRefGoogle Scholar
  13. 13.
    V. G. Badelin, V. I. Smirnov, and I. N. Mezhevoi, Russ. J. Phys. Chem 76, 1299 (2002).Google Scholar
  14. 14.
    B. Palecz, J. Therm. Anal. Calorim. 54, 257 (1998).CrossRefGoogle Scholar
  15. 15.
    H. Piekarski and B. Nowicka, J. Therm. Anal. Calorim. 102, 31 (2010).CrossRefGoogle Scholar
  16. 16.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 616, 20 (2015).CrossRefGoogle Scholar
  17. 17.
    B. Palecz, H. Piekarski, and W. Romanowski, J. Mol. Liq. 84, 279 (2000).CrossRefGoogle Scholar
  18. 18.
    V. I. Smirnov, V. G. Badelin, and I. N. Mezhevoi, Russ. J. Phys. Chem. A 76, 1168 (2002).Google Scholar
  19. 19.
    V. I. Smirnov and V. G. Badelin, Russ. J. Phys. Chem. A 82, 2069 (2008).CrossRefGoogle Scholar
  20. 20.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 544, 43 (2012).CrossRefGoogle Scholar
  21. 21.
    R. Zana, Adv. Colloid Interface Sci. 57, 1 (1995).CrossRefGoogle Scholar
  22. 22.
    V. S. Kuznetsov, N. V. Usol’tseva, and V. V. Bykova, J. Struct. Chem. 53, 82 (2012).CrossRefGoogle Scholar
  23. 23.
    V. S. Kuznetsov, A. P. Blinov, N. V. Usol’tseva, and G. A. Anan’eva, Colloid J. 69, 627 (2007).CrossRefGoogle Scholar
  24. 24.
    V. S. Kuznetsov, N. V. Usol’tseva, V. V. Bykova, V. P. Zherdev, and G. A. Anan’eva, Colloid J. 67, 581 (2005).CrossRefGoogle Scholar
  25. 25.
    V. S. Kuznetsov, N. V. Usol’tseva, A. P. Blinov, and V. V. Bykova, Colloid J. 68, 285 (2006).CrossRefGoogle Scholar
  26. 26.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 544, 43 (2012).CrossRefGoogle Scholar
  27. 27.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 520, 153 (2011).CrossRefGoogle Scholar
  28. 28.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 501, 55 (2010).CrossRefGoogle Scholar
  29. 29.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 485, 72 (2009).CrossRefGoogle Scholar
  30. 30.
    J. J. Savage and R. H. Wood, J. Sol. Chem 5, 733 (1976).CrossRefGoogle Scholar
  31. 31.
    V. I. Smirnov, V. G. Badelin, and I. N. Mezhevoi, Russ. J. Phys. Chem. A 76, 1168 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations