Skip to main content
Log in

Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane–chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2–3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. D. Grayfer, MN. Kozlova, and V. E. Fedorov, Adv. Colloid Interface Sci. 245, 40 (2017). doi 10.1016/j.cis.2017.04.014

    Article  CAS  Google Scholar 

  2. S. B. Brichkin and V. F. Razumov, Russ. Chem. Rev. 85, 1297 (2016).

    Article  CAS  Google Scholar 

  3. A.-M. A. Abdel-Wahab and A. E.-A. M. Gaber, Photochem. Photobiol. A 114, 213 (1998).

    Article  CAS  Google Scholar 

  4. B. O’Regan and M. Gratzel, Nature 353 (24), 737 (1991).

    Article  Google Scholar 

  5. S. Ito, T. N. Murakashi, P. Comte, et al., Thin Solid Films 516, 4613 (2008).

    Article  CAS  Google Scholar 

  6. D. A. Afanasyev, N. Kh. Ibrayev, T. M. Serikov, and A. K. Zeinidenov, Russ. J. Phys. Chem. A 90, 833 (2016).

    Article  CAS  Google Scholar 

  7. B. Kim, D. Kim, D. Cho, and S. Cho, Chemosphere 52, 277 (2003).

    Article  CAS  Google Scholar 

  8. H. Noritomi, Y. Umezawa, S. Miyagawa, and S. Kato, Adv. Chem. Eng. Sci. 1, 299 (2011).

    Article  CAS  Google Scholar 

  9. Y. D. Sosa, M. Rabelero, M. E. Treviño, et al., J. Nanomater. 2010, 392572 (2010). doi 10.1155/2010/392572

    Article  Google Scholar 

  10. J. B. Miller, J. M. Harris, and E. K. Hobbie, Langmuir 30, 7936 (2014).

    Article  CAS  Google Scholar 

  11. Ch. Urata, Yu. Aoyama, A. Tonegawa, et al., Chem. Commun. 34, 5094 (2009).

    Article  Google Scholar 

  12. J. C. Trefry, J. L. Monahan, K. M. Weaver, et al., J. Am. Chem. Soc. 132, 10970 (2010).

    Article  CAS  Google Scholar 

  13. C. Wallar, T. Zhang, K. Shi, and I. Zhitomirsky, Colloid Surf., A 500, 195 (2016).

    Article  CAS  Google Scholar 

  14. A. I. Bulavchenko and D. N. Pletnev, J. Phys. Chem. C 112, 16365 (2008).

    Article  CAS  Google Scholar 

  15. A. I. Bulavchenko and P. S. Popovetsky, Langmuir 26, 736 (2010).

    Article  CAS  Google Scholar 

  16. J. Eastoe, M. J. Hollamby, and L. Hudson, Adv. Colloid Interface Sci. 128–130, 5 (2006).

    Article  Google Scholar 

  17. F. Beunis, F. Strubbe, K. Neyts, and A. R. M. Verschueren, Appl. Phys. Lett. 90, 182103 (2007).

    Article  Google Scholar 

  18. D. P. J. Barz, M. J. Vogel, and P. H. Steen, Langmuir 26, 5 (2010).

    Article  Google Scholar 

  19. A. I. Bulavchenko, N. O. Shaparenko, and M. G. Demidova, Electrophoresis 38, 1678 (2017). doi 10.1002/elps.201600542

    Article  CAS  Google Scholar 

  20. A. I. Bulavchenko, M. G. Demidova, and D. I. Beketova, Cryst. Growth Des. 13, 485 (2013).

    Article  CAS  Google Scholar 

  21. P. D. Moran and J. R. Bartlett, J. Sol-Gel Sci. Technol. 15, 251 (1999).

    Article  CAS  Google Scholar 

  22. S. Kuo and F. J. Osterle, J. Colloid Interface Sci. 25, 421 (1967).

    Article  CAS  Google Scholar 

  23. P. S. Popovetskiy, A. T. Arymbaeva, and A. I. Bulavchenko, Colloid. J. 79, 106 (2017).

    Article  CAS  Google Scholar 

  24. V. A. Tolpekin, D. Ende, M. H. G. Duits, and J. Mellema, Langmuir 20, 8460 (2004).

    Article  CAS  Google Scholar 

  25. Q. Guo, V. Singh, and S. H. Behrens, Langmuir 26, 3203 (2010).

    Article  CAS  Google Scholar 

  26. D. P. J. Barz, M. J. Vogel, and P. H. Steen, Langmuir 26, 3126 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Beketova.

Additional information

Original Russian Text © N.O. Shaparenko, D.I. Beketova, M.G. Demidova, A.I. Bulavchenko, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 5, pp. 775–781.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaparenko, N.O., Beketova, D.I., Demidova, M.G. et al. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles. Russ. J. Phys. Chem. 92, 948–954 (2018). https://doi.org/10.1134/S0036024418050278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418050278

Keywords

Navigation