Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 876–883 | Cite as

Optimization of Photooxidative Removal of Phenazopyridine from Water

  • Soudabeh Saeid
  • Mohammad A. Behnajady
  • Pasi Tolvanen
  • Tapio Salmi
Chemical Kinetics and Catalysis

Abstract

The photooxidative removal of analgesic pharmaceutical compound phenazopyridine (PhP) from aqueous solutions by UV/H2O2 system with a re-circulated photoreactor was investigated. Response surface methodology (RSM) was employed to optimize the effect of operational parameters on the photooxidative removal efficiency. The investigated variables were: the initial PhP and H2O2 concentrations, irradiation time, volume of solution and pH. The analysis of variance (ANOVA) of quadratic model demonstrated that the described model was highly significant. The predicted values of the photooxidative removal efficiency were found to be in a fair agreement with experimental values (R2 = 0.9832, adjusted R2 = 0.9716). The model predicted that the optimal reaction conditions for a maximum removal of PhP (>98%) were: initial PhP concentration less than 23 mg L–1, initial concentration of H2O2 higher than 470 mg L–1, solution volume less than 500 mL, pH close to 2 and irradiation time longer than 6 min.

Keywords

advanced oxidation processes (AOPs) UV/H2O2 phenazopyridine recirculated photoreactor central composite design (CCD) response surface methodology (RSM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Pérez, D. Barceló, C. Sans, and S. Esplugas, J. Hazard. Mater. 263, 268 (2013).CrossRefGoogle Scholar
  2. 2.
    H. O. Uv, B. A. Wols, C. H. M. Hofman-caris, D. J. H. Harmsen, and E. F. Beerendonk, Water Res. 47, 5876 (2013).CrossRefGoogle Scholar
  3. 3.
    H. Eskandarloo, A. Badiei, and M. A. Behnajady, Ind. Eng. Chem. Res. 53, 7847 (2014).CrossRefGoogle Scholar
  4. 4.
    X. He, A. A. De, A. Hiskia, T. Kaloudis, K. O. Shea, and D. D. Dionysiou, Water Res. 74, 227 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Saeid and M. A. Behnajady, Orient. J. Chem. 34, 1211 (2015).CrossRefGoogle Scholar
  6. 6.
    M. A. Behnajady and N. Modirshahla, Chemosphere 62, 1543 (2006).CrossRefGoogle Scholar
  7. 7.
    T. K. Trinh and L. S. Kang, Environ. Eng. Res. 15, 63 (2010).CrossRefGoogle Scholar
  8. 8.
    K. S. Rao, S. Anand, K. Rout, P. Venkateswarlu, and A. Pradesh, Clean–Soil, Air, Water 40, 1 (2012).CrossRefGoogle Scholar
  9. 9.
    H. Eskandarloo, A. Badiei, and M. A. Behnajady, Desalin. Water Treat. 55, 210 (2015).CrossRefGoogle Scholar
  10. 10.
    M. A. Behnajady and M. Hajiahmadi, Int. J. Photoenergy 2013, 289290 (2013).CrossRefGoogle Scholar
  11. 11.
    A. R. Khataee, Polish J. Chem. Technol. 11 (4), 38 (2009).CrossRefGoogle Scholar
  12. 12.
    E. Basturk and M. Karatas, J. Photochem. Photobiol., A 299, 67 (2015).CrossRefGoogle Scholar
  13. 13.
    N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, J. Hazard. Mater. 118, 155 (2005).CrossRefGoogle Scholar
  14. 14.
    Y. X. Liu and J. Zhang, Ind. Eng. Chem. Res 50, 3836 (2011).CrossRefGoogle Scholar
  15. 15.
    L. de Melo, R. Pereira, R. Fabbro, F. Gozzi, R. Falcao, S. Cesar, D. Oliveira, and A. Machulek, Sci. Total Environ. 573, 518 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Soudabeh Saeid
    • 1
    • 2
  • Mohammad A. Behnajady
    • 1
  • Pasi Tolvanen
    • 2
  • Tapio Salmi
    • 2
  1. 1.Department of Chemistry, Tabriz BranchIslamic Azad UniversityTabrizIran
  2. 2.Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry CentreÅbo Akademi UniversityAbo/TurkuFinland

Personalised recommendations