Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 836–839 | Cite as

Thermodynamic Functions of Yttrium Trifluoride and Its Dimer in the Gas Phase

  • E. L. Osina
  • D. M. Kovtun
Chemical Thermodynamics and Thermochemistry


New calculations of the functions for YF3 and Y2F6 in the gas phase using quantum-chemical calculations by MP2 and CCSD(T) methods are performed in connection with the ongoing work on obtaining reliable thermodynamic data of yttrium halides. The obtained values are entered in the database of the IVTANTERMO software complex. Equations approximating the temperature dependence of the reduced Gibbs energy in the Т = 298.15–6000 K range of temperatures are presented.


yttrium trifluoride yttrium trifluoride dimer thermodynamic properties MP2 CCSD(T) relativistic pseudopotentials for d-elements YF3 Y2F6 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Osina and A. V. Gusarov, High Temp. 53, 817 (2015).CrossRefGoogle Scholar
  2. 2.
    A. D. Chervonnyi, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by J.-C. G Bunzli and V. K. Pecharsky (2012), Vol. 52, p.165.CrossRefGoogle Scholar
  3. 3.
    K. S. Krasnov and T. G. Danilova, Teplofiz. Vys. Temp. 7, 1213 (1970).Google Scholar
  4. 4.
    R. J. M. Konings and A. S. Booij, J. Mol. Struct. 271, 183 (1992).CrossRefGoogle Scholar
  5. 5.
    L. V. Gurvich, Yu. S. Ezhov, E. L. Osina, and E. A. Shenyavskaya, Russ. J. Phys. Chem. A 73, 331 (1999).Google Scholar
  6. 6.
    P. A. Akishin, V. A. Naumov, and V. M. Tatevskii, Kristallografiya 4, 194 (1959).Google Scholar
  7. 7.
    R. H. Hauge, J. W. Hastie, and J. L. Margrave, J. Less-Common Met. 23, 359 (1971).CrossRefGoogle Scholar
  8. 8.
    R. D. Wesley and C. W. DeKock, J. Phys. Chem. 77, 466 (1973).CrossRefGoogle Scholar
  9. 9.
    J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Less-Common Met. 39, 309 (1975).CrossRefGoogle Scholar
  10. 10.
    X. Wang and L. Andrews, J. Phys. Chem. A 114, 2293 (2010).CrossRefGoogle Scholar
  11. 11.
    E. W. Kaiser, W. E. Falconer, and D. W. Klemperer, J. Chem. Phys. 56, 5392 (1972).CrossRefGoogle Scholar
  12. 12.
    S. Huzinaga, M. Klobukowski, Z. Barandiaran, and L. Seijo, J. Chem. Phys. 84, 6315 (1986).CrossRefGoogle Scholar
  13. 13.
    V. G. Solomonik and O. Yu. Marochko, Zh. Strukt. Khim. 41, 891 (2000).Google Scholar
  14. 14.
    V. G. Solomonik and O. Yu. Marochko, Russ. J. Phys. Chem. A 74, 2094 (2000).Google Scholar
  15. 15.
    Y. Zhang, J. Zhao, G. Tang, and L. Zhu, Spectrochim. Acta, Part A 62, 1 (2005).CrossRefGoogle Scholar
  16. 16.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, et al., Gaussian 03, Rev. B.03 (Gaussian Inc., Pittsburgh, PA, 2003).Google Scholar
  17. 17.
    K. A. Peterson, D. Figgen, M. Dolg, and H. Stoll, J. Chem. Phys. 126, 124101 (2007).CrossRefGoogle Scholar
  18. 18. Scholar
  19. 19.
    T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  20. 20.
    E. L. Osina, High Temp. 55, 216 (2017).CrossRefGoogle Scholar
  21. 21.
    E. L. Osina and L. N. Gorokhov, High Temp. 55, 615 (2017).CrossRefGoogle Scholar
  22. 22.
    D. L. Hildenbrand and K. H. Lau, J. Chem. Phys. 102, 3769 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations