Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 1006–1010 | Cite as

Adsorption of Dyes in Studying the Surface Chemistry of Ultradispersed Diamond

  • T. D. Khokhlova
  • G. R. Yunusova
  • S. N. Lanin
Physical Chemistry of Surface Phenomena

Abstract

The effect the surface chemistry of ultradispersed diamond (UDD) has on the adsorption of watersoluble dyes is considered. A comparison is made to adsorption on graphitized thermal carbon black (GTCB), which has a homogeneous and nonporous surface. The adsorption isotherms of dyes and the dependence of the adsorption on the pH of solutions are measured. It is found that UDD adsorbs acid (anionic) dyes—acid orange (AO) and acid anthraquinone blue (AAB)—but barely adsorbs a basic (cationic) dye, methylene blue (MB), because of the predominance of positively charged basic groups on the surface of UDD. The maximum adsorption of AO is much lower on UDD than on GTCB, while the maximum adsorption of AAB is similar for both surfaces. The adsorption of AO on UDD depends strongly on the pH of the solution, while the adsorption of AAB is independent of this parameter. It is suggested that the adsorption of AAB is determined not only by ionic and hydrophobic interactions but also by coordination interactions with impurity metal ions on a UDD surface. It is concluded that the adsorption of dyes characterizes the chemistry of a UDD surface with high sensitivity.

Keywords

adsorption ultradispersed diamond graphitized thermal carbon black dyes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Okamoto, Chem. Phys. Lett. 405, 79 (2005).CrossRefGoogle Scholar
  2. 2.
    D. A. Pichugina, S. N. Lanin, N. V. Kovaleva, et al., Russ. Chem. Bull. 59, 2039 (2010).CrossRefGoogle Scholar
  3. 3.
    S. N. Lanin, D. A. Pichugina, A. F. Shestakov, et al., Russ. J. Phys. Chem. A 84, 2133 (2010).CrossRefGoogle Scholar
  4. 4.
    N. V. Kovaleva, S. N. Lanin, and L. N. Samadani, Russ. J. Phys. Chem. A 80, 945 (2006).CrossRefGoogle Scholar
  5. 5.
    S. N. Lanin, E. V. Vlasenko, N. V. Kovaleva, and F. T. Zung, Russ. J. Phys. Chem. A 82, 2152 (2008).CrossRefGoogle Scholar
  6. 6.
    J. P. Coulomb, B. Demirdjian, D. Ferry, and M. Trabelsi, Adsorption 19, 861 (2013).CrossRefGoogle Scholar
  7. 7.
    S. N. Lanin, N. V. Kovaleva, P. T. Dung, and K. S. Lanina, Moscow Univ. Chem. Bull. 63, 250 (2008).CrossRefGoogle Scholar
  8. 8.
    X. He, K. B. Male, P. N. Nesterenko, et al., ACS Appl. Mater. Interfaces 5, 8796 (2013).CrossRefGoogle Scholar
  9. 9.
    A. A. Askalany and B. B. Saha, J. Colloid Interface Sci. 490 (15), 59 (2017).CrossRefGoogle Scholar
  10. 10.
    L. D. Asnin and V. A. Davankov, Russ. J. Phys. Chem. A 85, 1629 (2011).CrossRefGoogle Scholar
  11. 11.
    S. N. Lanin, E. B. Pashkova, N. V. Kovaleva, and K. S. Lanina, Russ. Chem. Bull. 58, 729 (2009).CrossRefGoogle Scholar
  12. 12.
    E. M. Reyes-Gallardo, R. Lucena, and S. Cardenas, RSC Adv. 7, 2308 (2017).CrossRefGoogle Scholar
  13. 13.
    S. N. Lanin, A. A. Bannykh, E. V. Vlasenko, et al., Prot. Met. Phys. Chem. Surf. 50, 739 (2014).CrossRefGoogle Scholar
  14. 14.
    A. I. Lyamkin, A. P. Ershov, E. A. Petrov, et al., Dokl. Akad. Nauk SSSR 302, 611 (1988).Google Scholar
  15. 15.
    N. R. Greiner, D. S. Phillips, J. D. Johnson, et al., Nature 333 (6172), 440 (1988).CrossRefGoogle Scholar
  16. 16.
    V. Yu. Dolmatov, Russ. Chem. Rev. 76, 339 (2007).CrossRefGoogle Scholar
  17. 17.
    I. I. Kulakova, V. V. Korol’kov, R. Yu. Yakovlev, and G. V. Lisichkin, Nanotechnol. Russ. 5, 474 (2010).CrossRefGoogle Scholar
  18. 18.
    Detonation Nanodiamonds: Production and Application, Ed. by P. A. Vityaz’ (Belarus. Navuka, Minsk, 2013), p. 381 [in Russian].Google Scholar
  19. 19.
    L. C. L. Huang and H.-C. Chang, Langmuir 20, 5879 (2004).CrossRefGoogle Scholar
  20. 20.
    A. P. Puzyr’, I. O. Pozdnyakova, and V. S. Bondar’, Phys. Solid State 46, 761 (2004).CrossRefGoogle Scholar
  21. 21.
    S. N. Lanin, A. A. Bannykh, and N. V. Kovaleva, Russ. J. Phys. Chem. A 87, 1550 (2013). doi 10.1134/S0036024413090124CrossRefGoogle Scholar
  22. 22.
    S. N. Lanin, A. N. Vinogradova, E. V. Vlasenko, N. V. Kovaleva, K. S. Lanina, T. D. Khokhlova, and Fam Tien Zung, Prot. Met. Phys. Chem. Surf. 47, 738 (2011).CrossRefGoogle Scholar
  23. 23.
    N. A. Skorik, E. V. Tomilova, and N. M. Berendeev, Izv Vyssh. Uchebn. Zaved., Fiz. 57 (7/2), 142 (2014).Google Scholar
  24. 24.
    R. I. Valov, I. S. Larionova, M. G. Khanina, et al., Tekhnol. Lek. Sredstv, No. 6, 28 (2010).Google Scholar
  25. 25.
    V. S. Bondar’, A. P. Puzyr’, K. V. Purtov, et al., Ross. Nanotekhnol. 3 (5–6), 38 (2008).Google Scholar
  26. 26.
    S. N. Lanin, S. A. Rychkova, A. E. Vinogradov, et al., Adsorption 23, 639 (2017). doi 10.1134/S0036024417010150CrossRefGoogle Scholar
  27. 27.
    R. Yu. Yakovlev, A. S. Solomatin, N. B. Leonidov, et al., Ross. Khim. Zh. 56 (3-4), 114 (2012).Google Scholar
  28. 28.
    L. D. Belyakova, O. G. Larionov, S. A. Parkaeva, et al., Sorbtsion. Khromatogr. Protsessy 8 (1), 66 (2008).Google Scholar
  29. 29.
    P. N. Nesterenko and O. N. Fedyanina, J. Chromatogr., A 1217, 498 (2010).CrossRefGoogle Scholar
  30. 30.
    S. N. Lanin, S. A. Rychkova, A. E. Vinogradov, and I. A. Shatalov, Russ. Chem. Bull. 65, 110 (2016). doi 10.1007/s11172-016-1272-8CrossRefGoogle Scholar
  31. 31.
    S. N. Lanin, S. A. Rychkova, A. E. Vinogradov, et al., Diam. Relat. Mater. 64, 49 (2016). doi 10.1016/j.diamond. 2016.01.005CrossRefGoogle Scholar
  32. 32.
    T. M. Gubarevich, N. M. Kostyukova, P. P. Sataev, et al., Sverkhtverd. Mater. 5, 30 (1991).Google Scholar
  33. 33.
    S. N. Lanin, S. A. Rychkova, A. E. Vinogradov, et al., Sorbtsion. Khromatogr. Protsessy 17 (1), 63 (2017).Google Scholar
  34. 34.
    A. V. Kiselev, D. P. Poshkus, and Ya. I. Yashin, Molecular Foundations of Adsorptional Chromatography (Khimiya, Moscow, 1986) [in Russian].Google Scholar
  35. 35.
    G. P. Bogatyreva, M. A. Marinich, G. A. Bazalii, N. A. Oleinik, E. V. Ishchenko, and V. L. Gvyazdovskaya, Phys. Solid State 46, 665 (2004).CrossRefGoogle Scholar
  36. 36.
    Experimental Methods in Adsorption and Molecular Chromatography, Ed. by Yu. S. Nikitin and R. S. Petrova (Mosk. Gos. Univ., Moscow, 1990) [in Russian].Google Scholar
  37. 37.
    T. D. Khokhlova and L. T. Hien, Mosc. Univ. Chem. Bull. 62, 128 (2007).CrossRefGoogle Scholar
  38. 38.
    A. L. Vereshchagin, G. V. Sakovich, L. A. Petrov, et al., Sov. Phys. Dokl. 35, 917 (1990).Google Scholar
  39. 39.
    A. P. Kreshkov, Principles of Analytical Chemistry. Theoretical Foundations. Qualitative Analysis (Khimiya, Moscow, 1970), Vol. 1 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. D. Khokhlova
    • 1
  • G. R. Yunusova
    • 1
  • S. N. Lanin
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations