Skip to main content
Log in

Studying Solid-Phase Processes in Metakaoline–Sodium Hydroxide Mixtures by Means of Isoconversion Analysis

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Processes of the thermal treatment of 6Al2Si4O7: 12NaOH mixtures for the synthesis of zeolites are studied. The mixtures are subjected to ultrasonic treatment and mechanochemical activation, after which the suspensions are evaporated, granulated, and dried. The study is performed using X-ray diffraction, synchronous thermal analysis, and electron microscopy. It is established that calcination below ~500°C leads to the dehydration of the LTA zeolite and sodium hydroaluminates formed earlier, and Al2Si4O7 reacts with LTA and NaOH in the range of 500–800°C to form Na6Al4Si4O17 and Na8Al4Si4O18. Using the Ozawa–Flynn–Wall and Kissinger–Akahira–Sunose methods, the apparent activation energies (E) are calculated for this range. The two methods yield close results. It is found that E grows from 30–80 to 240–300 kJ/mol as conversion increases. It is shown that preliminary ultrasonic treatment and mechanochemical activation reduce apparent energy of activation E due to changes in the morphology of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974).

    Google Scholar 

  2. E. B. G. Johnson and S. E. Arshad, Appl. Clay Sci. 97–98, 215 (2014).

    Article  Google Scholar 

  3. A. Pfenninger, in Molecular Sieves–Science and Technology, Vol. 2: Structures and Structure Determination, Ed. by H. G. Karge and J. Weitkamp (Springer, Berlin, 1999), p.163.

    CAS  Google Scholar 

  4. M. L. Pavlov, O. S. Travkina, R. A. Basimova, I. N. Pavlova, and B. I. Kutepov, Pet. Chem. 49, 36 (2009).

    Article  Google Scholar 

  5. M. L. Pavlov, O. S. Travkina, and B. I. Kutepov, Catal. Ind. 4, 11 (2012).

    Article  Google Scholar 

  6. V. Yu. Prokof’ev, N. E. Gordina, A. B. Zhidkova, and A. M. Efremov, J. Mater. Sci. 47, 5385 (2012).

    Article  Google Scholar 

  7. V. Yu. Prokof’ev and N. E. Gordina, Appl. Clay Sci. 101, 44 (2014).

    Article  Google Scholar 

  8. N. E. Gordina, V. Yu. Prokof’ev, Yu. N. Kul’pina, et al., Ultrason. Sonochem. 33, 210 (2016).

    Article  CAS  Google Scholar 

  9. N. E. Gordina, V. Yu. Prokof’ev, Yu. N. Kul’pina, et al., Steklo Keram., No. 9, 23 (2016).

    Google Scholar 

  10. T. Ozawa, Thermochim. Acta 355, 35 (2000).

    Article  CAS  Google Scholar 

  11. P. Budrugeac, D. Homentcovschi, and E. Segal, J. Therm. Anal. Calorim. 66, 557 (2001).

    Article  CAS  Google Scholar 

  12. R.-Z. Hu and Q.-Zh. Shi, Thermal Analysis Kinetics (Science Press, Beijing, 2001).

    Google Scholar 

  13. E. Post, J. Blumm, L. Hagemann, and J. B. Henderson, Thermal Analysis for Ceramic Materials (NETZSCH-Gerätebau, München, 2001).

    Google Scholar 

  14. H. E. Kissinger, J. Res. Natl. Bureau Stand 57, 217 (1956).

    Article  CAS  Google Scholar 

  15. T. Ozawa, Bull. Chem. Soc. Jpn. 38 (1965).

    Google Scholar 

  16. J. H. Flynn and L. A. Wall, J. Polym. Sci. B: Polym. Lett. 4, 323 (1966).

    Article  CAS  Google Scholar 

  17. H. L. Friedman, J. Polym. Sci. B: Polym. Lett. 7, 41 (1969).

    Article  CAS  Google Scholar 

  18. J. Opfermann and E. Kaisersberger, Thermochim. Acta 203, 167 (1992).

    Article  CAS  Google Scholar 

  19. T. Akahira and T. Sunose, Res. Report Chiba Inst. Technol. 16, 22 (1971).

    Google Scholar 

  20. C. D. Doyle, J. Appl. Polym. Sci., No. 5, 285 (1961).

    Article  CAS  Google Scholar 

  21. A. W. Coats and J. P. Redfern, Nature 201, 68 (1964).

    Article  CAS  Google Scholar 

  22. M. Brown, D. Dollimore, and A. Galwey, Compr. Chem. Kinet. 22, 1 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokof’ev.

Additional information

Original Russian Text © N.E. Gordina, V.Yu. Prokof’ev, A.P. Khramtsova, D.S. Cherednikova, E.M. Konstantinova, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 5, pp. 796–803.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordina, N.E., Prokof’ev, V.Y., Khramtsova, A.P. et al. Studying Solid-Phase Processes in Metakaoline–Sodium Hydroxide Mixtures by Means of Isoconversion Analysis. Russ. J. Phys. Chem. 92, 992–998 (2018). https://doi.org/10.1134/S003602441805014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441805014X

Keywords

Navigation