Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 992–998 | Cite as

Studying Solid-Phase Processes in Metakaoline–Sodium Hydroxide Mixtures by Means of Isoconversion Analysis

  • N. E. Gordina
  • V. Yu. Prokof’ev
  • A. P. Khramtsova
  • D. S. Cherednikova
  • E. M. Konstantinova
Physical Chemistry of Surface Phenomena


Processes of the thermal treatment of 6Al2Si4O7: 12NaOH mixtures for the synthesis of zeolites are studied. The mixtures are subjected to ultrasonic treatment and mechanochemical activation, after which the suspensions are evaporated, granulated, and dried. The study is performed using X-ray diffraction, synchronous thermal analysis, and electron microscopy. It is established that calcination below ~500°C leads to the dehydration of the LTA zeolite and sodium hydroaluminates formed earlier, and Al2Si4O7 reacts with LTA and NaOH in the range of 500–800°C to form Na6Al4Si4O17 and Na8Al4Si4O18. Using the Ozawa–Flynn–Wall and Kissinger–Akahira–Sunose methods, the apparent activation energies (E) are calculated for this range. The two methods yield close results. It is found that E grows from 30–80 to 240–300 kJ/mol as conversion increases. It is shown that preliminary ultrasonic treatment and mechanochemical activation reduce apparent energy of activation E due to changes in the morphology of particles.


metakaoline zeolite sodium alumosilicate Ozawa–Flynn–Wall method Kissinger–Akahira–Sunose method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974).Google Scholar
  2. 2.
    E. B. G. Johnson and S. E. Arshad, Appl. Clay Sci. 97–98, 215 (2014).CrossRefGoogle Scholar
  3. 3.
    A. Pfenninger, in Molecular Sieves–Science and Technology, Vol. 2: Structures and Structure Determination, Ed. by H. G. Karge and J. Weitkamp (Springer, Berlin, 1999), p.163.Google Scholar
  4. 4.
    M. L. Pavlov, O. S. Travkina, R. A. Basimova, I. N. Pavlova, and B. I. Kutepov, Pet. Chem. 49, 36 (2009).CrossRefGoogle Scholar
  5. 5.
    M. L. Pavlov, O. S. Travkina, and B. I. Kutepov, Catal. Ind. 4, 11 (2012).CrossRefGoogle Scholar
  6. 6.
    V. Yu. Prokof’ev, N. E. Gordina, A. B. Zhidkova, and A. M. Efremov, J. Mater. Sci. 47, 5385 (2012).CrossRefGoogle Scholar
  7. 7.
    V. Yu. Prokof’ev and N. E. Gordina, Appl. Clay Sci. 101, 44 (2014).CrossRefGoogle Scholar
  8. 8.
    N. E. Gordina, V. Yu. Prokof’ev, Yu. N. Kul’pina, et al., Ultrason. Sonochem. 33, 210 (2016).CrossRefGoogle Scholar
  9. 9.
    N. E. Gordina, V. Yu. Prokof’ev, Yu. N. Kul’pina, et al., Steklo Keram., No. 9, 23 (2016).Google Scholar
  10. 10.
    T. Ozawa, Thermochim. Acta 355, 35 (2000).CrossRefGoogle Scholar
  11. 11.
    P. Budrugeac, D. Homentcovschi, and E. Segal, J. Therm. Anal. Calorim. 66, 557 (2001).CrossRefGoogle Scholar
  12. 12.
    R.-Z. Hu and Q.-Zh. Shi, Thermal Analysis Kinetics (Science Press, Beijing, 2001).Google Scholar
  13. 13.
    E. Post, J. Blumm, L. Hagemann, and J. B. Henderson, Thermal Analysis for Ceramic Materials (NETZSCH-Gerätebau, München, 2001).Google Scholar
  14. 14.
    H. E. Kissinger, J. Res. Natl. Bureau Stand 57, 217 (1956).CrossRefGoogle Scholar
  15. 15.
    T. Ozawa, Bull. Chem. Soc. Jpn. 38 (1965).Google Scholar
  16. 16.
    J. H. Flynn and L. A. Wall, J. Polym. Sci. B: Polym. Lett. 4, 323 (1966).CrossRefGoogle Scholar
  17. 17.
    H. L. Friedman, J. Polym. Sci. B: Polym. Lett. 7, 41 (1969).CrossRefGoogle Scholar
  18. 18.
    J. Opfermann and E. Kaisersberger, Thermochim. Acta 203, 167 (1992).CrossRefGoogle Scholar
  19. 19.
    T. Akahira and T. Sunose, Res. Report Chiba Inst. Technol. 16, 22 (1971).Google Scholar
  20. 20.
    C. D. Doyle, J. Appl. Polym. Sci., No. 5, 285 (1961).CrossRefGoogle Scholar
  21. 21.
    A. W. Coats and J. P. Redfern, Nature 201, 68 (1964).CrossRefGoogle Scholar
  22. 22.
    M. Brown, D. Dollimore, and A. Galwey, Compr. Chem. Kinet. 22, 1 (1980).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. E. Gordina
    • 1
  • V. Yu. Prokof’ev
    • 1
  • A. P. Khramtsova
    • 1
  • D. S. Cherednikova
    • 1
  • E. M. Konstantinova
    • 1
  1. 1.Ivanovo State University of Chemical TechnologyIvanovoRussia

Personalised recommendations