Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 768–771 | Cite as

Hydrothermal Synthesis and Optical Properties of the Monodisperse Spindle-Shaped CeO2 Microstructures

  • Xiaofei Niu
Physical Chemistry of Nanoclusters and Nanomaterials


The monodisperse spindle-shaped CeO2 microstructures with irregular surface and the sharp ends have been successfully synthesized via a simple hydrothermal method. XRD, SEM, XPS, Raman scattering and photoluminescence (PL) spectrum were employed to characterize the samples. The results showed that the spindle-shaped CeO2 have a fluorite cubic structure and there are Ce3+ ions and oxygen vacancies in surface of samples. The synthesized CeO2 shows excellent room temperature optical properties, which is likely associated with Ce3+ ions and oxygen vacancies in the spindle-shaped CeO2 samples.


hydrothermal method nanoparticles defects optical materials and properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. Zhang, X. J. Du, L. Y. Shi, and R. H. Gao, Dalton Trans. 41, 14455 (2012).CrossRefGoogle Scholar
  2. 2.
    R. J. Qi, Y. J. Zhu, G. F. Cheng, and Y. H. Huang, Nanotechnology 16, 2502 (2005).CrossRefGoogle Scholar
  3. 3.
    J. Qi, K. Zhao, G. D. Li, Y. Gao, H. J. Zhao, R. B. Yu, et al., Nanoscale 6, 4072 (2014).CrossRefGoogle Scholar
  4. 4.
    I. Singh and A. Chandra, Int. J. Hydrogen Energy 41, 1913 (2016).CrossRefGoogle Scholar
  5. 5.
    Z. Wu, M. Li, J. Howe, H. M. Meyer III, and S. H. Overbury, Langmuir 26, 16595 (2010).CrossRefGoogle Scholar
  6. 6.
    T. Taniguchi, T. Watanabe, N. Sugiyama, A. K. Subramani, H. Wagata, N. Matsushita, et al., J. Phys. Chem. C 113, 19789 (2009).CrossRefGoogle Scholar
  7. 7.
    A. Kumar, S. Babu, A. S. Karakoti, A. Schulte, and S. Seal, Langmuir 25, 10998 (2009).CrossRefGoogle Scholar
  8. 8.
    F. M. Meng, J. F. Gong, Z. H. Fan, H. J. Li, and J. T. Yuan, Ceram. Int. 42, 4700 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Jiang, W. Z. Wang, E. Gao, S. M. Sun, and L. Zhang, Chem. Commun. 50, 2005 (2014).CrossRefGoogle Scholar
  10. 10.
    C. R. Li, M. Y. Cui, Q. T. Sun, W. J. Dong, Y. Y. Zheng, K. Tsukamoto, et al., J. Alloy Compd. 504, 498 (2010).CrossRefGoogle Scholar
  11. 11.
    N. S. Ferreira, R. S. Angélica, V. B. Marques, C. C. O. D. Lima, and M. S. Silva, Mater. Lett. 165, 139 (2016).CrossRefGoogle Scholar
  12. 12.
    F. L. Liang, Y. Yu, W. Zhou, X. Y. Xu, and Z. H. Zhu, J. Mater. Chem. A 3, 634 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Younis, D. Chu, Y. V. Kaneti, and S. Li, Nanoscale 8, 378 (2016).CrossRefGoogle Scholar
  14. 14.
    A. C. Cabral, L. S. Cavalcante, R. C. Deus, E. Longo, A. Z. Simões, and F. Moura, Ceram. Int. 40, 4445 (2014).CrossRefGoogle Scholar
  15. 15.
    C. Zhang, F. M. Meng, L. N. Wang, M. Zhang, and Z. L. Ding, Mater. Lett. 130, 202 (2014).CrossRefGoogle Scholar
  16. 16.
    H. F. Xu and H. Li, J. Magn. Magn. Mater. 377, 272 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Zdravkovic, B. Simovic, A. Golubovic, D. Poleti, I. Veljkovic, M. Scepanovic, et al., Ceram. Int. 41, 1970 (2015).CrossRefGoogle Scholar
  18. 18.
    L. N. Wang, F. M. Meng, K. K. Li, and F. Lu, Appl. Surf. Sci. 286, 269 (2013).CrossRefGoogle Scholar
  19. 19.
    B. Choudhury and A. Choudhury, Mater. Chem. Phys. 131, 666 (2012).CrossRefGoogle Scholar
  20. 20.
    F. M. Meng, L. N. Wang, and J. B. Cui, J. Alloy Compd. 556, 102 (2013).CrossRefGoogle Scholar
  21. 21.
    G. F. Wang, Q. Y. Mu, T. Chen, and Y. D. Wang, J. Alloy Compd. 493, 202 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Spintronics and Nanomaterials ResearchSuzhou UniversitySuzhouChina

Personalised recommendations