Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 714–718 | Cite as

Association Constants in the Bovine Serum Albumin/Human Serum Albumin–Tween 20 System in Aqueous Solutions

  • I. M. Vlasova
  • A. A. Vlasov
  • G. R. Grapendaal
  • A. M. Saletskii
Physical Chemistry of Solutions


The association constants in the bovine serum albumin/human serum albumin–Tween 20 system are determined in aqueous solutions at pH 3.5–8.0 by means of nonpolarized fluorescence and protein fluorescence quenching. It is found that the most efficient association of serum albumin molecules with Tween 20 micelles occurs at pH 5.0 near the isoelectric points of proteins.


bovine serum albumin human serum albumin Tween 20 fluorescence quenching association constants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Gryzunov and G. E. Dobretsov, Blood Serum Albumin in Clinical Medicine (IRIUS, Moscow, 1994) [in Russian].Google Scholar
  2. 2.
    R. Dawson, D. Elliot, W. Elliot, and K. Jones, Data for Biochemical Research (Clarendon, Oxford, 1959; Mir, Moscow, 1991).Google Scholar
  3. 3.
    R. B. Gennis, Biomembranes: Molecular Structure and Function (Springer, New York, 1989; Mir, Moscow, 1997).Google Scholar
  4. 4.
    L. V. Levshin and A. M. Saletskii, Optical Methods of Investigation of Molecular Systems. 1. Molecular Spectroscopy (Mosk. Gos. Univ., Moscow, 1994) [in Russian].Google Scholar
  5. 5.
    E. A. Permyakov, The Method of Intrinsic Protein Luminescence (Nauka, Moscow, 2003) [in Russian].Google Scholar
  6. 6.
    I. M. Vlasova, A. A. Vlasov, and A. M. Saletsky, J. Mol. Struct. 984, 332 (2010).CrossRefGoogle Scholar
  7. 7.
    X. Diaz, E. Abuin, and E. Lissi, J. Photochem. Photobiol. A: Chem. 155, 157 (2003).CrossRefGoogle Scholar
  8. 8.
    A. Brahma, C. Mandal, and D. Bhattacharyya, Biochim. Biophys. Acta 1751, 159 (2005).CrossRefGoogle Scholar
  9. 9.
    W. Schmidt, Optical Spectroscopy in Chemistry and Life Sciences: An Introduction (Wiley-VCH, Weinheim, 2005).Google Scholar
  10. 10.
    I. Tinoko, Jr., K. Sauer, J. Wang, and J. Puglisi, Physical Chemistry. Principles and Application in Biological Sciences (Prentice Hall, New Jersey, 1995; Tekhnosfera, Moscow, 2005).Google Scholar
  11. 11.
    I. M. Vlasova and A. M. Saletsky, Mosc. Univ. Phys. Bull. 66, 59 (2011).CrossRefGoogle Scholar
  12. 12.
    I. M. Vlasova, V. V. Zhuravleva, and A. M. Saletskii, Russ. J. Phys. Chem. A 87, 1027 (2013).CrossRefGoogle Scholar
  13. 13.
    I. M. Vlasova, V. V. Zhuravleva, and A. M. Saletskii, Russ. J. Phys. Chem. A 88, 551 (2014).CrossRefGoogle Scholar
  14. 14.
    I. M. Vlasova, A. A. Vlasov, and A. M. Saletskii, Russ. J. Phys. Chem. A 90, 1479 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. M. Vlasova
    • 1
    • 2
  • A. A. Vlasov
    • 1
  • G. R. Grapendaal
    • 1
  • A. M. Saletskii
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Center for Theoretical Problems of Physicochemical PharmacologyRussian Academy of SciencesMoscowRussia

Personalised recommendations