Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 749–755 | Cite as

Structure of LiBF4 Solvate Complexes in Ethylene Carbonate, Based on High-Resolution NMR and Quantum-Chemical Data

  • G. Z. Tulibaeva
  • A. F. Shestakov
  • V. I. Volkov
  • O. V. Yarmolenko
Structure of Matter and Quantum Chemistry


The ion solvation of LiBF4 in ethylene carbonate is studied via high resolution NMR, conductometry, and quantum-chemical simulation. 7Li, 11B, 19F, 13C, and 17O NMR spectra are acquired for LiBF4 solutions in ethylene carbonate, and their conductivity is measured in the concentration range of 0.07–1.77 mol kg–1 at 40°C. Molecular models of solvate complexes of a Li+BF 4 ion pair containing n ethylene carbonate molecules are constructed. The calculated 11B chemical shifts are virtually independent of n, which can provide a relationship between 11B experimental shifts and degree of dissociation (α). The α value is estimated from a theoretical change in chemical shift of −0.414 ppm when a BF 4 ion transitions from a free state to an associated one of the contact ion pair. The α values are in reasonable agreement with the degree of dissociation for LiBF4 in propylene carbonate, found from the Walden product of the equivalent electrical conductivity of a solution by its viscosity.


organic electrolyte ionic conductivity high-resolution NMR chemical shifts 7Li, 11B, and 19F nuclei quantum-chemical simulation density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. Richardson, A. M. Voice, and I. M. Ward, Electrochim. Acta 130, 606 (2014).CrossRefGoogle Scholar
  2. 2.
    P. M. Richardson, A. M. Voice, and I. M. Ward, J. Chem. Phys. 139, 214501 (2013).CrossRefGoogle Scholar
  3. 3.
    L. Garrido, A. Mejía, N. García, et al., J. Phys. Chem. B 119, 3097 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Holz and Ch. Müller, Ber. Bunsen-Ges. Phys. Chem. 86, 141 (1982).CrossRefGoogle Scholar
  5. 5.
    M. Holz, Prog. NMR Spectrosc. 18, 327 (1986).CrossRefGoogle Scholar
  6. 6.
    S. R. Heil and M. Holz, J. Magn. Reson. 135, 17 (1988).CrossRefGoogle Scholar
  7. 7.
    P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford Univ. Press, New York, 1991).Google Scholar
  8. 8.
    W. S. Price, Concepts Magn. Reson. 9, 299 (1997).CrossRefGoogle Scholar
  9. 9.
    S. Matsukawa, H. Yasunaga, C. Zhao, et al., Prog. Polym. Sci. 24, 995 (1999).CrossRefGoogle Scholar
  10. 10.
    P. N. Sen, Concepts Magn. Reson. A 23, 1 (2004).CrossRefGoogle Scholar
  11. 11.
    N. Chapman, O. Borodin, T. Yoon, et al., J. Phys. Chem. C 121, 2135 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Shakourian-Fard, G. Kamath, and S. K. R. S. Sankaranarayanan, ChemPhysChem. 17, 2916 (2016).CrossRefGoogle Scholar
  13. 13.
    B. Jiang, V. Ponnuchamy, Y. N. Shen, et al., J Phys. Chem. Lett. 7, 3554 (2016).CrossRefGoogle Scholar
  14. 14.
    W. Cui, Y. Lansac, H. Lee, et al., Phys. Chem. Chem. Phys. 18, 23607 (2016).CrossRefGoogle Scholar
  15. 15.
    M. El Kazzi, I. Czekaj, E. J. Berg, et al., Top. Catal. 59, 628 (2016).CrossRefGoogle Scholar
  16. 16.
    M. G. Giorgini, K. Futamatagawa, H. Torii, et al., J. Phys. Chem. Lett. 6, 3296 (2015).CrossRefGoogle Scholar
  17. 17.
    K. D. Fulfer and D. G. Kuroda, J. Phys. Chem. C 120, 24011 (2016).CrossRefGoogle Scholar
  18. 18.
    L. M. Suo, Z. Fang, Y. S. Hu, et al., Chin. Phys. B 25, 016101 (2016).CrossRefGoogle Scholar
  19. 19.
    B. B. Zhang, Y. Zhou, X. Li, et al., Spectrochim. Acta, Part A 124, 40 (2014).CrossRefGoogle Scholar
  20. 20.
    X. Bogle, R. Vazquez, S. Greenbaum, et al., J. Phys. Chem. Lett. 4, 1664 (2013).CrossRefGoogle Scholar
  21. 21.
    J. Thielen, C. F. Kins, M. Schonhoff, et al., Appl. Magn. Reson. 45, 1063 (2014).CrossRefGoogle Scholar
  22. 22.
    K. Hayamizu, J. Chem. Eng. Data 57, 2012 (2012).CrossRefGoogle Scholar
  23. 23.
    V. I. Volkov and A. A. Marinin, Russ. Chem. Rev. 83, 248 (2013).CrossRefGoogle Scholar
  24. 24.
    D. M. Seo, P. D. Boyle, J. L. Allen, et al., J. Phys. Chem. C 118, 18377 (2014).CrossRefGoogle Scholar
  25. 25.
    O. Borodin, M. Olguin, P. Ganesh, et al., Phys. Chem. Chem. Phys. 18, 164 (2016).CrossRefGoogle Scholar
  26. 26.
    M. Takeuchi, Y. Kameda, Y. Umebayashi, et al., J. Mol. Liq. 148, 99 (2009).CrossRefGoogle Scholar
  27. 27.
    I. Skarmoutsos, V. Ponnuchamy, V. Vetere, et al., J. Phys. Chem. C 119, 4502 (2015).CrossRefGoogle Scholar
  28. 28.
    M. D. Bhatt, M. Cho, and K. Cho, Model. Simul. Mater. Sci. Eng. 20, 065004 (2012).CrossRefGoogle Scholar
  29. 29.
    W. H. Ding, X. L. Lei, and C. Y. Ouyang, Int. J. Quantum Chem. 116, 97 (2016).CrossRefGoogle Scholar
  30. 30.
    M. D. Bhatt and C. O’Dwyer, Phys. Chem. Chem. Phys. 17, 4799 (2015).CrossRefGoogle Scholar
  31. 31.
    P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  32. 32.
    D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).CrossRefGoogle Scholar
  33. 33.
    S. S. Zhang, K. Xu, and T. R. Jow, J. Electrochem. Soc. 149, A586 (2002).CrossRefGoogle Scholar
  34. 34.
    X. C. Deng, M. Hu, X. L. Wei, et al., J. Power Sources 308, 172 (2016).CrossRefGoogle Scholar
  35. 35.
    K. Matsubara, R. Kaneuchi, and N. Maekita, J. Chem. Soc. 94, 3601 (1998).Google Scholar
  36. 36.
    X. C. Deng, M. Y. Hu, X. L. Wei, et al., J. Power Sources. 285, 146 (2015).CrossRefGoogle Scholar
  37. 37.
    J. Peng, L. Carbone, M. Gobet, et al., Electrochim. Acta 213, 606 (2016).CrossRefGoogle Scholar
  38. 38.
    L. Yang, A. Xiao, and B. L. Lucht, J. Mol. Liq. 154, 131 (2010).CrossRefGoogle Scholar
  39. 39.
    K. K. Lee, K. Park, H. C. Lee, et al., Nat. Commun. 8, 14658 (2017).CrossRefGoogle Scholar
  40. 40.
    T. Afroz, D. M. Seo, S. D. Han, et al., J. Phys. Chem. C 119, 7022 (2015).CrossRefGoogle Scholar
  41. 41.
    S. D. Han, J. L. Allen, E. Jonsson, et al., J. Phys. Chem. C 117, 5521 (2013).CrossRefGoogle Scholar
  42. 42.
    H. Tsunekawa, A. Narumi, M. Sano, et al., J. Phys. Chem. B 107, 10962 (2003).CrossRefGoogle Scholar
  43. 43.
    Y. Marcus and G. Hefter, Chem. Rev. 104, 3405 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. Z. Tulibaeva
    • 1
  • A. F. Shestakov
    • 1
  • V. I. Volkov
    • 1
  • O. V. Yarmolenko
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations