Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 756–759 | Cite as

Ab Initio Simulation of Transport Properties in Rb–CH4 and Cs–CH4 Laser Media

  • V. A. Terashkevich
  • V. V. Meshkov
  • E. A. Pazyuk
  • A. V. Stolyarov
Structure of Matter and Quantum Chemistry


The pair interaction potentials of the weakly bound Rb–CH4 and Cs–CH4 systems, which are active media of alkali metal vapor lasers with broadband diode or excimer laser pumping, were calculated by the ab initio method. The electronic problem was solved by the coupled-cluster method in the CCSD(T) version including the basis set superposition error and extrapolation to an infinite basis set. The obtained pointwise ab initio potentials were approximated by the analytical functions based on the orthogonal Chebyshev polynomial expansion with correct asymptotic behavior at the dissociation limit and then used within the framework of the molecular kinetic theory of rarefied gases to evaluate the reduced collision integrals and mutual diffusion coefficients.


Rb–CH4 Cs–CH4 potential energy surface cross sections collision integrals diffusion coefficients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Shalagin, Phys. Usp. 54, 975 (2011).CrossRefGoogle Scholar
  2. 2.
    G. A. Pitz, C. D. Fox, and G. P. Perram, Phys. Rev. A 84, 032708 (2011).CrossRefGoogle Scholar
  3. 3.
    M. D. Rotondaro and G. P. Perram, Phys. Rev. A 57, 4045 (1998).CrossRefGoogle Scholar
  4. 4.
    Z. Konefal and M. Ignaciuk, Opt. Quantum Electron. 28, 169 (1996).CrossRefGoogle Scholar
  5. 5.
    U. Westblom, S. Agrup, H. Hertz, et al., Appl. Phys. B 50, 487 (1990).CrossRefGoogle Scholar
  6. 6.
    E. Goll, H. J. Werner, H. Stoll, et al., Chem. Phys. 329, 276 (2006).CrossRefGoogle Scholar
  7. 7.
    H. Jie, J. M. Merritt, M. C. Heaven, et al., AIP Conf. Proc. 1278, 733 (2010).Google Scholar
  8. 8.
    B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, Opt. Commun. 260, 696 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Heaven, Proc. SPIE 8238, 8 (2012).Google Scholar
  10. 10.
    T. G. A. Heijmen, T. Korona, R. Moszynski, et al., J. Chem. Phys. 107, 902 (1997).CrossRefGoogle Scholar
  11. 11.
    M. Wanglera, D. A. Rotha, I. Paka, et al., J. Mol. Spectrosc. 222, 109 (2003).CrossRefGoogle Scholar
  12. 12.
    H.-J. Werner, P. J. Knowles, G. Knizia, et al., MOLPRO, Version 2010.1, A Package of ab initio Programs (2010).Google Scholar
  13. 13.
    F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).CrossRefGoogle Scholar
  14. 14.
    F. Weigend and A. Baldes, J. Chem. Phys. 133, 10 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).CrossRefGoogle Scholar
  16. 16.
    L. Busevica, I. Klincare, O. Nikolayeva, et al., J. Chem. Phys. 134, 104307 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Mitroy and J. Y. Zhang, Phys. Rev. A 76, 8 (2007).Google Scholar
  18. 18.
    A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980; Springer, Berlin, 1985).CrossRefGoogle Scholar
  19. 19.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, USA, 1967).Google Scholar
  20. 20.
    H. O’Hara and F. J. Smith, Comp. Phys. Commun. 2, 47 (1971).CrossRefGoogle Scholar
  21. 21.
    A. J. Stone, The Theory of Intermolecular Forces, Vol. 32 of International Series of Monographs on Chemistry (Oxford Univ. Press, UK, 1996).Google Scholar
  22. 22.
    V. V. Meshkov, V. N. Popov, and L. R. Fokin, Russ. J. Phys. Chem. A 88, 578 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Terashkevich
    • 1
  • V. V. Meshkov
    • 1
  • E. A. Pazyuk
    • 1
  • A. V. Stolyarov
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations