Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 630–639 | Cite as

Thermodynamic Properties of Alloys of the Sn–Yb System

  • V. S. Sudavtsova
  • M. A. Shevchenko
  • M. I. Ivanov
  • A. S. Kozorezov
  • V. G. Kudin
Chemical Thermodynamics and Thermochemistry


Thermochemical properties of liquid alloys of the Sn–Yb system are studied via calorimetry at 1110–1310 K over the ranges of concentrations 0 < xYb < 0.47 and 0.82 < xYb < 1. Considerable negative heat effects of the mixing of these alloys are identified. Activities of the components, the Gibbs energies and entropies of mixing, and the liquidus curve of the phase diagram of this system are calculated using the ideal associated solution (IAS) model and agree with data from the literature.


calorimetry liquid alloys thermochemical properties ideal associated solution model Sn–Yb system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. J. Liu, M. H. Chen, Y. Lu, et al., CALPHAD 47, 129 (2014). doi 10.1016/j.calphad.2014.07.002CrossRefGoogle Scholar
  2. 2.
    M. Mezbahul-Islam, A. O. Mostafa, and M. Medraj, J. Mater. 2014, 704283 (2014). doi 10.1155/2014/704283Google Scholar
  3. 3.
    K. A. Gschneidner, J. Less-Common Met. 17, 13 (1969).CrossRefGoogle Scholar
  4. 4.
    W. C. M. Mattens, F. R. de Boer, A. K. Niessen, and A. R. Miedema, J. Magn. Magn. Mater. 31–34, 451 (1983).CrossRefGoogle Scholar
  5. 5.
    A. Palenzona and S. Cirafici, J. Less-Common Met. 46, 321 (1976).CrossRefGoogle Scholar
  6. 6.
    A. T. Dinsdale, Calphad 15, 319 (1991).CrossRefGoogle Scholar
  7. 7.
    I. Barin and G. Platzki, Thermochemical Data of Pure Substances (VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1995).CrossRefGoogle Scholar
  8. 8.
    CRC Handbook of Chemistry and Physics, 89th ed., Ed. by D. R. Lide (CRC, Taylor and Francis, Boca Raton, FL, 2009).Google Scholar
  9. 9.
    Binary Alloy Phase Diagrams, 2nd ed., Ed. by T. B. Masalsky (ASM International, Metals Park, OH, 1990).Google Scholar
  10. 10.
    M. V. Bulanova and V. R. Sidorko, IPMS Preprint (Frantsevich Inst. Probl. Mater. Sci. Natl. Acad. Sci. Ukrainy, Kiev, 1994).Google Scholar
  11. 11.
    A. Palenzona and S. Cirafici, J. Phase Equilib. 12, 482 (1991).CrossRefGoogle Scholar
  12. 12.
    P. Manfrinetti, D. Mazzone, and A. Palenzona, J. Alloys Compd. 284, L1 (1999).CrossRefGoogle Scholar
  13. 13.
    E. A. Leon-Escamilla and J. D. Corbett, Inorg. Chem. 38, 738 (1999).CrossRefGoogle Scholar
  14. 14.
    E. A. Leon-Escamilla and J. D. Corbett, Inorg. Chem. 40, 1226 (2001).CrossRefGoogle Scholar
  15. 15.
    J. N. Pratt and A. W. H. Morris, J. Less-Common Met. 10, 91 (1966).CrossRefGoogle Scholar
  16. 16.
    C. Chatillon-Colinet, A. Percheron, J.-C. Mathieu, and J.-C. Achard, C. R. Acad. Sci. Paris 270, 473 (1970).Google Scholar
  17. 17.
    A. Palenzona, Thermochim. Acta 5, 473 (1973).CrossRefGoogle Scholar
  18. 18.
    R. Boom, Scr. Metall. 8, 1277 (1974).CrossRefGoogle Scholar
  19. 19.
    V. A. Lebedev, V. I. Kober, and L. F. Yamshchikov, Thermochemistry of Alloys of Rare-Earth and Actinide Elements: A Handbook (Metallurgiya, Chelyabinsk, 1989) [in Russian].Google Scholar
  20. 20.
    A. Yassin and R. Castanet, J. Alloys Compd. 307, 191 (2000).CrossRefGoogle Scholar
  21. 21.
    V. T. Witusiewicz, V. R. Sidorko, and M. V. Bulanova, J. Alloys Compd. 248, 233 (1997).CrossRefGoogle Scholar
  22. 22.
    M. Idbenali and C. Servant, J. Therm. Anal. Calorim. 103, 131 (2011). doi 10.1007/s10973-010-1082-4CrossRefGoogle Scholar
  23. 23.
    M. Ivanov, V. Berezutski, and N. Usenko, J. Mater. Res. 102, 277 (2011).Google Scholar
  24. 24.
    V. G. Kudin, M. A. Shevchenko, I. V. Mateiko, and V. S. Sudavtsova, Zh. Fiz. Khim. 87, 364 (2013).Google Scholar
  25. 25.
    M. A. Shevchenko, M. I. Ivanov, V. V. Berezutskii, V. G. Kudin, and V. S. Sudavtsova, Russ. J. Phys. Chem. A 88, 897 (2014).CrossRefGoogle Scholar
  26. 26.
    V. S. Sudavtsova, M. A. Shevchenko, V. V. Berezutskii, M. I. Ivanov, and V. G. Kudin, Russ. J. Phys. Chem. A 88, 200 (2014).CrossRefGoogle Scholar
  27. 27.
    M. A. Shevchenko, V. G. Kudin, and V. S. Sudavtsova, Tr. IPM im. Frantsevicha NANU, Ser. Mod. Probl. Fiz. Materialoved. 21, 51 (2012).Google Scholar
  28. 28.
    G. Kaptay, Metall. Mater. Trans. A 43, 531 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Sudavtsova
    • 1
  • M. A. Shevchenko
    • 1
  • M. I. Ivanov
    • 1
  • A. S. Kozorezov
    • 1
  • V. G. Kudin
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceKyivUkraine

Personalised recommendations