Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 621–629 | Cite as

Protecting Aluminum from Atmospheric Corrosion via Surface Hydrophobization with Stearic Acid and Trialkoxysilanes

  • Yu. I. Kuznetsov
  • A. M. Semiletov
  • A. A. Chirkunov
  • I. A. Arkhipushkin
  • L. P. Kazanskii
  • N. P. Andreeva
Article
  • 10 Downloads

Abstract

The possibility of subjecting aluminum to hydrophobization and superhydrophobization (SHP) with ethanol solutions of trialkoxysilanes and stearic acid is explored. It is shown that SHP coatings are highly effective in protecting Al against atmospheric corrosion. The thicknesses of surface SHP layers are determined via X-ray photoelectron spectroscopy and ellipsometry. The protective ability of SHP coatings is determined by polarization measurements and corrosion tests in a salt fog chamber.

Keywords

corrosion aluminum corrosion inhibitors hydrophobization trialkoxysilanes stearic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Barthlott and C. Neinhuis, Planta 202, 1 (1997).CrossRefGoogle Scholar
  2. 2.
    L. Feng, Y. Zhang, J. Xi, et al., Langmuir 24, 4114 (2008).CrossRefGoogle Scholar
  3. 3.
    T. Sun, L. Feng, X. Gao, and L. Jiang, Acc. Chem. Res. 38, 644 (2005).CrossRefGoogle Scholar
  4. 4.
    L. B. Boinovich and A. M. Emelyanenko, Russ. Chem. Rev. 77, 583 (2008).CrossRefGoogle Scholar
  5. 5.
    D. Quéré, Rep. Prog. Phys. 68, 2495 (2005).CrossRefGoogle Scholar
  6. 6.
    D. Zhang, L. Wang, H. Qian, and X. Li, J. Coat. Technol. Res. 13, 11 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Li, R. Wu, Z. Jing, et al., Langmuir (2015). doi 10.1021/acs.langmuir.5b02734Google Scholar
  8. 8.
    L. D. Chambers, K. R. Stokes, F. C. Walsh, and R. J. K. Wood, Surf. Coat. Technol. 201, 3642 (2006).CrossRefGoogle Scholar
  9. 9.
    K. Satoh, H. Nakazumi, and M. Morita, J. Sol–Gel Sci. Technol. 27, 327 (2003).CrossRefGoogle Scholar
  10. 10.
    T. Kako, A. Nakajima, H. Irie, et al., J. Mater. Sci. 39, 547 (2004).CrossRefGoogle Scholar
  11. 11.
    L. B. Boinovich, A. M. Emelyanenko, K. A. Emelyanenko, and K. I. Maslakov, Phys. Chem. Chem. Phys. 18, 3131 (2016).CrossRefGoogle Scholar
  12. 12.
    W. Liu, Q. Xu, J. Han, et al., Corros. Sci. 110, 105 (2016).CrossRefGoogle Scholar
  13. 13.
    L. Li, Y. Zhang, J. Lei, et al., Corros. Sci. 85, 174 (2014).CrossRefGoogle Scholar
  14. 14.
    Yu. I. Kuznetsov, Int. J. Corros. Scale Inhib. 5, 282 (2016).CrossRefGoogle Scholar
  15. 15.
    D. A. Alpysbaeva, D. B. Vershok, A. M. Emel’yanenko, et al., Korroz.: Mater., Zashch., No. 8, 42 (2013).Google Scholar
  16. 16.
    Q. Xie, J. Xu, L. Feng, et al., Adv. Mater. 16, 302 (2004).CrossRefGoogle Scholar
  17. 17.
    S. T. Wang, L. Feng, and L. Jiang, Adv. Mater. 18, 767 (2006).CrossRefGoogle Scholar
  18. 18.
    X. M. Li, D. Reinhoud, and C. C. Mercedes, Chem. Soc. Rev. 36, 1350 (2007).CrossRefGoogle Scholar
  19. 19.
    Z. Lu, P. Wang, and D. Zhang, Corros. Sci. 91, 287 (2015).CrossRefGoogle Scholar
  20. 20.
    B. Watkins, D. A. Doshi, C. J. Brinker, and J. Majewski, Corros. Sci. 50, 897 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Zhou, J. Li, C. C. Feng, et al., Chem. Vapor Depos. 16, 12 (2010).CrossRefGoogle Scholar
  22. 22.
    Y. Wu, N. Saito, F. A. Nae, et al., Surf. Sci. 600, 3710 (2006).CrossRefGoogle Scholar
  23. 23.
    L. Wu, X. Zhang, and J. Hu, Corros. Sci. 85, 482 (2014).CrossRefGoogle Scholar
  24. 24.
    M. Hikita, K. Tanaka, T. Nakamura, et al., Langmuir 21, 7299 (2005).CrossRefGoogle Scholar
  25. 25.
    F. Shi, X. X. Chen, L. Y. Wang, et al., Chem. Mater. 17, 6177 (2005); S. R. Ren, S. R. Yang, Y. P. Zhao, et al., Surf. Sci. 546, 64 (2003).CrossRefGoogle Scholar
  26. 26.
    L. Zhao, Q. Liu, R. Gao, et al., Corros. Sci. 80, 177 (2014).CrossRefGoogle Scholar
  27. 27.
    T. Abohalkuma, F. Shawish, and J. Telegdi, Int. J. Corros. Scale Inhib. 3, 151 (2014).CrossRefGoogle Scholar
  28. 28.
    E. Hoque, J. A. DeRose, P. Hoffmann, et al., J. Chem. Phys. 124, 174710 (2006).CrossRefGoogle Scholar
  29. 29.
    M. Thieme and H. Worch, J. Solid State Electrochem. doi 10.1007/s10008-006-0119-xGoogle Scholar
  30. 30.
    Q. Wang, B. Zhang, M. Qu, et al., Appl. Surf. Sci. 254, 2009 (2008).CrossRefGoogle Scholar
  31. 31.
    R. Wu, S. Liang, A. Pan, et al., Appl. Surf. Sci. 258, 5933 (2012).CrossRefGoogle Scholar
  32. 32.
    D. Zang, R. Zhu, W. Zhang, et al., Corros. Sci. 83, 86 (2014).CrossRefGoogle Scholar
  33. 33.
    A. M. Semiletov, Yu. I. Kuznetsov, and A. A. Chirkunov, Korroz.: Mater., Zashch., No. 6, 24 (2017).Google Scholar
  34. 34.
    F. L. McCrackin, NBS Technical Note No. 479 (Washington DC, 1969).Google Scholar
  35. 35.
    D. A. Shirley, Phys. Rev. B 5, 4709 (1972).CrossRefGoogle Scholar
  36. 36.
    H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).CrossRefGoogle Scholar
  37. 37.
    M. Mohai, Surf. Interface Anal. 36, 828 (2004).CrossRefGoogle Scholar
  38. 38.
    P. J. Cumpson and M. P. Seah, Surf. Interface Anal. 25, 430 (1997).CrossRefGoogle Scholar
  39. 39.
    C. Hansch and A. Leo, Correlation Analysis in Chemistry and Biology (Wiley, New York, 1981).Google Scholar
  40. 40.
    A. M. Semiletov, A. A. Chirkunov, Yu. I. Kuznetsov, and N. P. Andreeva, Zh. Fiz. Khim. 89, 1915 (2015).Google Scholar
  41. 41.
    A. M. Semiletov, Yu. I. Kuznetsov, and A. A. Chirkunov, Korroz.: Mater., Zashch., No. 6, 29 (2016).Google Scholar
  42. 42.
    M. Stratmann, W. Furberh, G. Grundmeier, et al., in Corrosion Mechanisms in Theory and Practice, Ed. by P. Marcus and J. Oudar (Marcel Dekker, New York, 1995), p. 373.Google Scholar
  43. 43.
    Yu. I. Kuznetsov, Korroz.: Mater., Zashch., No. 1, 1 (2011).Google Scholar
  44. 44.
    R. A. Shircliff, I. T. Martin, J. W. Pankow, et al., ACS Appl. Mater. Interfaces 3, 3285 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. I. Kuznetsov
    • 1
  • A. M. Semiletov
    • 1
  • A. A. Chirkunov
    • 1
  • I. A. Arkhipushkin
    • 1
  • L. P. Kazanskii
    • 1
  • N. P. Andreeva
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations