Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 710–713 | Cite as

Effect of Water–Ethanol Solvents on the Protonation Constants of Cryptand[2.2.2]

  • V. A. Isaeva
  • V. A. Sharnin
Physical Chemistry of Solutions


The protonation constants of cryptand[2.2.2] are determined potentiometrically at 298 K in water–ethanol solvents of variable composition. An increase in the concentration of a solution’s nonaqueous component reduces the equilibrium constants of the reactions of mono- and biprotonated cryptand[2.2.2] formation. The contribution from the resolvation of reagents to the change in the Gibbs energy of the studied reactions is estimated. The reduction in the protonation constants of cryptand[2.2.2] in water–ethanol solvents is mainly due to enhancement of the solvation of protons in water–ethanol mixtures.


equilibrium constants of reaction protonation cryptand[2.2.2] water–ethanol solvents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-M. Lehn and J. P. Sauvage, J. Am. Chem. Soc. 97, 6700 (1975).CrossRefGoogle Scholar
  2. 2.
    M. Hiraoka, Crown Compounds. Their Characteristics and Applications (Elsevier, Amsterdam, 1982).Google Scholar
  3. 3.
    B. G. Cox, D. Knop, and H. Schneider, J. Am. Chem. Soc. 100, 6002 (1978).CrossRefGoogle Scholar
  4. 4.
    F. Arnaud-Neu, V. Spiess, and M. J. Schwing-Weill, J. Chem. Res. Synop., No. 1, 10 (1982).Google Scholar
  5. 5.
    J. H. Burns and C. F. Baes, J. Inorg. Chem. 20, 616 (1981).CrossRefGoogle Scholar
  6. 6.
    G. Anderegg, Helv. Chim. Acta. 58, 1218 (1975).CrossRefGoogle Scholar
  7. 7.
    V. M. Loyola, R. Pizer, and R. G. Wilkins, J. Am. Chem. Soc. 99, 7185 (1977).CrossRefGoogle Scholar
  8. 8.
    G. Anderegg, J. Helv. Chim. Acta 64, 1790 (1981).CrossRefGoogle Scholar
  9. 9.
    V. A. Borodin, E. V. Kozlovskii, and V. P. Vasil’ev, Zh. Neorg. Khim. 31, 10 (1986).Google Scholar
  10. 10.
    E. H. Woolej and D. G. Hurkot, J. Phys. Chem. 74, 3908 (1970).CrossRefGoogle Scholar
  11. 11.
    N. Morel-Desrosiers and J.-P. Morel, Nouv. J. Chim. 3, 539 (1979).Google Scholar
  12. 12.
    V. N. Afanas’ev, V. A. Shormanov, and G. A. Krestov, Tr. Ivan. Khim.-Tekhnol. Inst., No. 13, 36 (1972).Google Scholar
  13. 13.
    A. V. Nevskii, V. A. Shormanov, and G. A. Krestov, Zh. Fiz. Khim. 61, 2544 (1987).Google Scholar
  14. 14.
    V. A. Isaeva, V. A. Sharnin, V. A. Shormanov, and I. A. Baranova, Russ. J. Phys. Chem. A 70, 1320 (1996).Google Scholar
  15. 15.
    V. V. Naumov, V. A. Isaeva, and V. A. Sharnin, Russ. J. Inorg. Chem. 56, 1139 (2011).CrossRefGoogle Scholar
  16. 16.
    A. V. Nevskii, V. A. Shormanov, and G. A. Krestov, Zh. Fiz. Khim. 58, 97 (1984).Google Scholar
  17. 17.
    V. A. Shormanov, G. I. Repkin, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 26, 561 (1983).Google Scholar
  18. 18.
    O. Popovych, A. Gibofsky, and D. H. Berne, Anal. Chem. 44, 811 (1972).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations