Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 724–729 | Cite as

The Temperature Effect on the Transport Properties of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids

  • E. P. Grishina
  • N. O. Kudryakova
  • L. M. Ramenskaya
  • Yu. A. Fadeeva
Physical Chemistry of Solutions


The temperature dependences of specific and equivalent conductivities, viscosity, density, and crystallization temperature are determined for three 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([C n MeIm] [Tf2N], n = 2, 3, 4) ionic liquids saturated with water vapor at room temperature. It is established that in the area of positive temperatures, the relationship between viscosity and conductivity obeys the fractional Walden rule with exponents of 0.97, 0.92, and 0.92 for ionic liquids with ethyl-, propyl-, butylradicals, respectively. The temperature dependences of conductivity and viscosity are approximated using the Vogel–Fulcher–Tammann equation (R2 > 0.999), and ideal glass transition temperatures T0 are calculated for the investigated liquids. The obtained values of T0 depend largely on the chosen range of temperatures. It is shown that [C2MeIm][Tf2N] occupies a separate position with regard to [C3MeIm][Tf2N] and [C4MeIm][Tf2N].


dialkylimidazolium ionic liquids electrical conductivity viscosity density temperature dependence glass transition temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Sato, S. Marukane, and T. Morinaga, in Applications of Ionic Liquids in Science and Technology, Ed. by S. Handy (InTech, Croatia, 2011).Google Scholar
  2. 2.
    H. Srour, L. Chancelier, E. Bolimowska, et al., J. Appl. Electrochem. 46, 149 (2016).CrossRefGoogle Scholar
  3. 3.
    Y. Zhao and T. Bostrom, Curr. Org. Chem. 19, 556 (2015).CrossRefGoogle Scholar
  4. 4.
    P. Wasserheid and T. Welton, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2003).Google Scholar
  5. 5.
    H. Tokuda, K. Hayamizu, K. Ishii, et al., J. Phys. Chem. B 109, 6103 (2005).CrossRefGoogle Scholar
  6. 6.
    H. Tokuda, S. Tsuzuki, M. A. B. H. Susan, et al., J. Phys. Chem. B 110, 19593 (2006).CrossRefGoogle Scholar
  7. 7.
    H. Tokuda, K. Ishii, M. A. B. H. Susan, et al., J. Phys. Chem. B 110, 2833 (2006).CrossRefGoogle Scholar
  8. 8.
    J. A. Widegren, E. M. Saurer, K. N. Marsh, et al., J. Chem. Thermodyn. 37, 569 (2005).CrossRefGoogle Scholar
  9. 9.
    H. Tokuda, K. Hayamizu, K. Ishii, et al., J. Phys. Chem. B 108, 16593 (2004).CrossRefGoogle Scholar
  10. 10.
    R. L. Gardas, M. G. Freire, P. J. Carvalho, et al., J. Chem. Eng. Data 52, 1881 (2007).CrossRefGoogle Scholar
  11. 11.
    E. Gomez, N. Calvar, E. A. Macedo, et al., J. Chem. Thermodyn. 45, 9 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. Pan, L. E. Boyd, J. F. Kruplak, et al., J. Electrochem. Soc. 158, F1 (2011).CrossRefGoogle Scholar
  13. 13.
    G. B. Appetecchi, M. Montaninoa, M. Carewskaa, et al., Electrochim. Acta 56, 1300 (2011).CrossRefGoogle Scholar
  14. 14.
    H. A. Every, A. G. Bishop, D. R. MacFarlane, et al., Phys. Chem. Chem. Phys. 6, 1758 (2004).CrossRefGoogle Scholar
  15. 15.
    P. Bonhôte, A. P. Dias, N. Papageorgiou, et al., Inorg. Chem. 35, 1168 (1996).CrossRefGoogle Scholar
  16. 16.
    J. G. Huddleston, A. E. Visser, W. M. Reichert, et al., Green Chem. 3, 1564 (2001).CrossRefGoogle Scholar
  17. 17.
    J. Vila, L. M. Varela, and O. Cabeza, Electrochim. Acta. 52, 7413 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Arm, F. Endres, and D. R. Macfarlane, et al., Nat. Mater. 8, 621 (2009).CrossRefGoogle Scholar
  19. 19.
    C. Chiappe and D. Pieraccini, J. Phys. Org. Chem. 18, 275 (2005).CrossRefGoogle Scholar
  20. 20.
    S. Corderí, B. González, N. Calvar, et al., Fluid Phase Equilib. 337, 11 (2013).CrossRefGoogle Scholar
  21. 21.
    A. M. O’Mahony, D. S. Silvester, L. Aldous, et al., J. Chem. Eng. Data 53, 2884 (2008).CrossRefGoogle Scholar
  22. 22.
    K. W. Pratt, W. F. Koch, Y. C. Wu, et al., Pure Appl. Chem. 73, 1783 (2001).CrossRefGoogle Scholar
  23. 23.
    A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 105, 4603 (2001).CrossRefGoogle Scholar
  24. 24.
    H. Matsumoto, K. Tanimoto, M. Nomura, et al., Chem. Lett. 29, 922 (2000).CrossRefGoogle Scholar
  25. 25.
    H. Zhao, Phys. Chem. Liq. 41, 545 (2003).CrossRefGoogle Scholar
  26. 26.
    K. Fumino, A. Wulf, and R. Ludwig, Angew. Chem. Int. Ed. 47, 8731 (2008).CrossRefGoogle Scholar
  27. 27.
    M. R. Housaindokht, H. E. Hosseini, M. S. S. Googheri, et al., J. Mol. Liq. 177, 94 (2013).CrossRefGoogle Scholar
  28. 28.
    W. Xu, E. I. Cooper, and C. A. Angell, J. Phys. Chem. B 107, 6170 (2003).CrossRefGoogle Scholar
  29. 29.
    C. P. Fredlake, J. M. Crosthwaite, and D. G. Hert, J. Chem. Eng. Data 49, 954 (2004).CrossRefGoogle Scholar
  30. 30.
    A. B. McEwen, H. L. Ngo, K. LeCompte, and J. L. Goldman, J. Electrochem. Soc. 146, 1687 (1999).CrossRefGoogle Scholar
  31. 31.
    S. V. Dzyuba and R. A. Bartsch, Tetrahedron Lett. 43, 4657 (2002).CrossRefGoogle Scholar
  32. 32.
    H. L. Ngo, K. LeCompte, L. Hargens, and A. B. McEwen, Thermochim. Acta 357–358, 97 (2000).CrossRefGoogle Scholar
  33. 33.
    S. V. Dzyuba and R. A. Bartsch, Chem. Phys. Chem. 3, 161 (2002).CrossRefGoogle Scholar
  34. 34.
    T. Nishida, Y. Tashiro, and M. Yamamoto, J. Fluorine Chem. 120, 135 (2003).CrossRefGoogle Scholar
  35. 35.
    W. Xu, L. M. Wang, R. A. Nieman, and C. A. Angell, J. Phys. Chem. B 107, 11749 (2003).CrossRefGoogle Scholar
  36. 36.
    M. Galiński, A. Lewandowski, and I. Stepniak, Electrochim. Acta 51, 5567 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. P. Grishina
    • 1
    • 2
  • N. O. Kudryakova
    • 1
  • L. M. Ramenskaya
    • 1
  • Yu. A. Fadeeva
    • 1
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Ivanovo State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations