Skip to main content
Log in

Effect of Silica Particle Size on Texture, Structure, and Catalytic Performance of Cu/SiO2 Catalysts for Glycerol Hydrogenolysis

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The influences of carrier particle sizes of Cu/SiO2 catalysts for hydrogenolysis of glycerol were studied use mono-dispersed silica as models. Catalysts were prepared by precipitation method with the average size of the mono-dispersed silica supports varying of 10, 20, and 90 nm. Characterization of the catalysts show that the physical properties such as pore volume and BET surface area of the catalysts were largely affected by the carrier particle size of silica. However, the copper dispersion of the three samples were similar. XPS patterns show a difference in the chemical states of copper species, small carrier particle size induced formation of copper phyllosilicate, which benefits on the stability of copper species in reaction. The overall activity in the reaction of glycerol hydrogenolysis shows a correlation with the carrier particle size. The small carrier particles prevent the copper species from aggregation thus such catalysts exhibit good catalytic activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Huber, S. Iborra, and A. Corma, Chem. Rev. 37, 4044 (2006).

    Article  Google Scholar 

  2. T. Q. Ye, L. X. Yuan, Y. Q. Chen, et al., Catal. Lett. 127, 323 (2009).

    Article  CAS  Google Scholar 

  3. T. Werpy, G. Petersen, A. Aden, et al., Top Value Added Chemicals from Biomass (U.S. Dep. of Energy, 2004), Vol. 1.

    Google Scholar 

  4. R. Nie, D. Liang, L. Shen, et al., Appl. Cata.l B: Environ. 127, 212 (2012).

    Article  CAS  Google Scholar 

  5. L. E. Chinchilla, C. M. Olmos, A. Villa, et al., Catal. Today 253, 178 (2015).

    Article  CAS  Google Scholar 

  6. S. X. Xia, Z. Yuan, L. N. Wang, et al., Bioresource Tech. 104, 814 (2012).

    Article  CAS  Google Scholar 

  7. C. C. Wang, H. Jiang, C. L. Chen, et al., Chem. Eng. J. 264, 344 (2015).

    Article  CAS  Google Scholar 

  8. S. M. D. Rezende, C. A. Franchini, M. L. Dieuzeide, et al., Chem. Eng. J. 272, 108 (2015).

    Article  Google Scholar 

  9. T. Pairojpiriyakul, E. Croiset, K. Kiatkittipong, et al., Int. J. Hydrogen Energy 39, 14739 (2014).

    Article  CAS  Google Scholar 

  10. J. A. Cecilia, C. Garcia-sancho, J. M. Meridarobles, et al., Catal. Today 254, 43 (2015).

    Article  CAS  Google Scholar 

  11. G. S. Kumae, Y. Wee, I. Lee, et al., Chem. Eng. J. 276, 283 (2015).

    Article  Google Scholar 

  12. A. Corma, S. Iborra, and A. Velty, Chem. Rev. 107, 2411 (2007).

    Article  CAS  Google Scholar 

  13. S. Kale, S. B. Umbarkar, M. K. Dongare, et al., Appl. Catal. A: Gen. 490, 10 (2015).

    Article  CAS  Google Scholar 

  14. M. A. Dasari, P. P. Kiatsimkul, W. R. Sutterlin, et al., Appl. Catal. A: Gen. 281, 225 (2005).

    Article  CAS  Google Scholar 

  15. Y. Kusunoki, T. Miyazawa, K. Kunimori, et al., Catal. Commun. 6, 645 (2005).

    Article  CAS  Google Scholar 

  16. M. L. Barbell, G. F. Santori, and N. N. Nichio, Bioresource Tech. 111, 500 (2012).

    Article  Google Scholar 

  17. T. Miyazawa, S. Koso, K. Kunimori, et al., Appl. Catal. A: Gen. 318, 244 (2007).

    Article  CAS  Google Scholar 

  18. I. Furikado, T. Miyazawa, S. Koso, et al., Green Chem. 9, 582 (2007).

    Article  CAS  Google Scholar 

  19. C. Montassier, J. C. Menezo, L. C. Hoang, et al., J. Mol. Catal. 70, 99 (1991).

    Article  CAS  Google Scholar 

  20. E. S. Vasilidou and A. A. Lemonidou, Appl. Catal. A: Gen. 396, 177 (2011).

    Article  Google Scholar 

  21. C. J. Yue, L. P. Gu, Y. Su, et al., React. Kinet. Mech. Catal. 111, 633 (2014).

    Article  CAS  Google Scholar 

  22. Y. H. Feng, H. B. Yin, L. Q. Shen, et al., Chem. Eng. Tech. 36, 73 (2013).

    Article  Google Scholar 

  23. S. H. Zhu, X. Q. Gao, Y, L. Zhu, et al., J. Catal. 303, 70 (2013).

    Article  CAS  Google Scholar 

  24. A. Bienholz, H. Hofmann, P. Claus, Appl. Catal. A: Gen. 391, 153 (2011).

    Article  CAS  Google Scholar 

  25. Z. W. Huang, F. Cui, J. J. Xue, et al., Catal. Today 183, 42 (2012).

    Article  CAS  Google Scholar 

  26. S. X. Xia, R. F. Nie, X. Y. Lu, et al., J. Catal. 296, 1 (2012).

    Article  CAS  Google Scholar 

  27. J. H. Guo, G. Y. Xu, Z. Han, et al., ACS Sustain Chem. Eng. 2, 2259 (2014).

    Article  CAS  Google Scholar 

  28. L. Ma, D. H. He, and Z. P. Li, Catal. Commun. 9, 2489 (2008).

    Article  CAS  Google Scholar 

  29. Z. W. Huang, F. Cui, H. X. Kang, et al., Chem. Mater. 20, 5090 (2008).

    Article  CAS  Google Scholar 

  30. D. G. C. J. G. Van, P. A. Elberse, A. Muldr, et al., Appl. Catal. 59, 275 (1990).

    Article  Google Scholar 

  31. S. H. Zhu, X. Q. Gao, Y. L. Zhu, et al., Catal. Sci. Tech. 5, 1169 (2015).

    Article  CAS  Google Scholar 

  32. E. D. Guerreiro, O. F. Gorriz, G. Larsen, et al., Appl. Catal. A: Gen. 204, 33 (2000).

    Article  CAS  Google Scholar 

  33. E. S. Vasiliadou, T. M. Eggenhuisen, P. Munnik, et al., Appl. Catal. B: Environ. 145, 108 (2014).

    Article  CAS  Google Scholar 

  34. E. P. Maris and R. J. J. Davis, Catal. 249, 328 (2007).

    Article  CAS  Google Scholar 

  35. Z. M. Zhou, X. Li, T. Y. Zeng, et al., Chin. J. Chem. Eng. 18, 384 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Tong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y.T., Zhe, C.H. & Ning, X. Effect of Silica Particle Size on Texture, Structure, and Catalytic Performance of Cu/SiO2 Catalysts for Glycerol Hydrogenolysis. Russ. J. Phys. Chem. 92, 449–455 (2018). https://doi.org/10.1134/S0036024418030366

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418030366

Keywords

Navigation