Skip to main content
Log in

Ab Initio Theoretical Studies on the Kinetics of Hydrogen Abstraction Type Reactions of Hydroxyl Radicals with CH3CCl2F and CH3CClF2

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2d,2p) basis set and MP2 method along with 6-311+G(d,p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2d,2p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2d,2p) and MP2/6-311+G(d,p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UNEP/WMO, Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project, Report No. 55 (World Meteorological Organization, 2014).

  2. R. A. Cox, R. G. Derwent, A. E. J. Eggleton, and J. E. Lovelock, Atmos. Environ. 10, 305 (1976).

    Article  CAS  Google Scholar 

  3. C. J. Howard and K. M. Evenson J. Chem. Phys. 64, 4303 (1976).

    Article  CAS  Google Scholar 

  4. R. T. Watson, G. Machado, B. Conaway, S. Wagner, and D. D. Davis, J. Phys. Chem. 81, 256 (1977).

    Article  CAS  Google Scholar 

  5. V. Handwerk and R. Zellner, Ber. Bunsenges Phys. Chem. 82, 1161 (1978).

    Article  CAS  Google Scholar 

  6. G. Paraskevopoulos, D. L. Singleton, and R. S. Irwin, J. Phys. Chem. 85, 561 (1981).

    Article  CAS  Google Scholar 

  7. M. A. A. Clyne and P. M. Holt, J. Chem. Soc. Faraday Trans. 2, 582 (1979).

    Article  Google Scholar 

  8. A. C. Brown, C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Atmos. Environ. 24, 2499 (1990).

    Article  Google Scholar 

  9. R. Liu, R. E. Huie, and M. J. Kurylo, J. Phys. Chem. 94, 3247 (1990).

    Article  CAS  Google Scholar 

  10. T. Gierczak, R. Talukdar, G. L. Vaghjiani, E. R. Lovejoy, and A. R. Ravishankara, J. Geophys. Res. 96, 5001 (1991).

    Article  CAS  Google Scholar 

  11. R. Talukdar, A. Mellouki, T. Gierczak, J. B. Burkholder, S. A. McKeen, and A. R. Ravishankara, J. Phys. Chem. 95, 5815 (1991).

    Article  CAS  Google Scholar 

  12. Z. Zhang, R. E. Huie, and M. J. Kurylo, J. Phys. Chem. 96, 1533 (1992).

    Article  CAS  Google Scholar 

  13. V. L. Orkin, and V. G. Khamaganov, J. Atmos. Chem. 16, 157 (1993).

    Article  CAS  Google Scholar 

  14. I. Lancar, G. LeBras, and G. Poulet, J. Chem. Phys. 90, 1897 (1993).

    CAS  Google Scholar 

  15. V. Mors, A. Hoffmann, W. Malms, and R. Zellner, Ber. Bunsenges Phys. Chem. 100, 540 (1996).

    Article  Google Scholar 

  16. T. D. Fang, P. H. Taylor, B. Dellinger, C. J. Ehlers, and R. J. Berry, J. Phys. Chem. A 101, 5758 (1997).

    Article  CAS  Google Scholar 

  17. J. K. Kang and C. B. Musgrave, J. Chem. Phys. 115, 11040 (2001).

    Article  CAS  Google Scholar 

  18. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  19. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  20. J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 110, 2822 (1999).

    Article  CAS  Google Scholar 

  21. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 126, 084108 (2007).

    Article  Google Scholar 

  22. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

    Article  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09, Revision A02 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  24. W. H. Miller, J. Chem. Phys. 62, 1899 (1975).

    Article  CAS  Google Scholar 

  25. W. H. Miller, Faraday Discuss. Chem. Soc. 62, 40 (1977).

    Article  CAS  Google Scholar 

  26. W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willets, Chem. Phys. Lett. 172, 62 (1990).

    Article  CAS  Google Scholar 

  27. R. Hernandez and W. H. Miller, Chem. Phys. Lett. 214, 129 (1993).

    Article  CAS  Google Scholar 

  28. T. L. Nguyen, J. F. Stanton, and J. R. Barker, J. Phys. Chem. A 115, 5118 (2011).

    Article  CAS  Google Scholar 

  29. J. R. Barker, T. L. Nguyen, and J. F. Stanton, J. Phys. Chem. A 116, 6408 (2012).

    Article  CAS  Google Scholar 

  30. T. L. Nguyen and J. R. Barker, J. Phys. Chem. A 114, 3718 (2010).

    Article  CAS  Google Scholar 

  31. T. L. Nguyen, J. F. Stanton, and J. R. Barker, Chem. Phys. Lett. 499, 9 (2010).

    Article  CAS  Google Scholar 

  32. T. L. Nguyen, J. F. Stanton, and J. R. Barker, J. Phys. Chem. A 115, 5118 (2011).

    Article  CAS  Google Scholar 

  33. M. Basire, P. Parneix, and F. J. Calvo, J. Chem. Phys. 129, 081101 (2008).

    Article  CAS  Google Scholar 

  34. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  CAS  Google Scholar 

  35. F. Wang and D. P. Landau, Phys. Rev. E 64, 56101 (2001).

    Article  CAS  Google Scholar 

  36. J. R. Barker, N. F. Ortiz, J. M. Preses, L. L. Lohr, A. Maranzana, P. J. Stimac, T. L. Nguyen, and T. J. D. Kumar, MultiWell-2014.1 Software, Ed. by J. R. Barker (Univ. Michigan, Ann Arbor, MI, 2014). http://aoss.engin.umich.edu/multiwell/.

    Google Scholar 

  37. M. A. Harthcock and J. Laane, J. Mol. Spectros. 91, 300 (1982).

    Article  CAS  Google Scholar 

  38. M. A. Harthcock and J. Laane, J. Phys. Chem. 89, 4231 (1985).

    Article  CAS  Google Scholar 

  39. M. J. Kurylo and V. L. Orkin, Chem. Rev. 103, 5049 (2003).

    Article  CAS  Google Scholar 

  40. R. G. Prinn, J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O’Doherty, R. H. J. Wang, L. Porter, and B. R. Miller, Science 292, 1882 (2001).

    Article  CAS  Google Scholar 

  41. J. Zheng and D. G. Truhlar, Phys. Chem. Chem. Phys. 12, 7782 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Saheb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saheb, V., Maleki, S. Ab Initio Theoretical Studies on the Kinetics of Hydrogen Abstraction Type Reactions of Hydroxyl Radicals with CH3CCl2F and CH3CClF2. Russ. J. Phys. Chem. 92, 442–448 (2018). https://doi.org/10.1134/S0036024418030329

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418030329

Keywords

Navigation