Skip to main content
Log in

Simulating the Surface Relief of Nanoaerosols Obtained via the Rapid Cooling of Droplets

  • Physical Chemistry of Aerosols
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

An approach is formulated that theoretically describes the structure of a rough surface of small aerosol particles obtained from a liquid droplet upon its rapid cooling. The problem consists of two stages. In the first stage, a concentration profile of the droplet–vapor transition region is calculated. In the second stage, local fractions of vacant sites and their pairs are found on the basis of this profile, and the rough structure of a frozen droplet surface transitioning to the solid state is calculated. Model parameters are the temperature of the initial droplet and those of the lateral interaction between droplet atoms. Information on vacant sites inside the region of transition allows us to identify adsorption centers and estimate the monolayer capacity, compared to that of the total space of the region of transition. The approach is oriented toward calculating adsorption isotherms on real surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lodiz and R. Parker, The Growth of Single Crystals (Englewood Cliffs, New Jersey, 1987).

    Google Scholar 

  2. F. F. Chernov, E. I. Givargizov, Kh. S. Bagdasarov, L. N. Dem’yanets, V. A. Kuznetsov, and A. N. Lobachev, Modern Crystallography (Nauka, Moscow, 1980; Springer, Berlin, 1984), Vol. 3.

    Google Scholar 

  3. I. V. Melikhov and M. S. Merkulova, Cocrystallization (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  4. P. Barret, Cinetique Heterogene (Gauthier-Villars, Paris, 1973).

    Google Scholar 

  5. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 677 (2010).

    Article  CAS  Google Scholar 

  6. Y. Saito and H. Muller-Krumbhaar, J. Chem. Phys. 70, 1078 (1979).

    Article  CAS  Google Scholar 

  7. T. A. Cherepanova, J. Cryst. Growth 52, 319 (1981).

    Article  CAS  Google Scholar 

  8. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas–Solid Interface (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  9. Yu. K. Tovbin, Prog. Surf. Sci., Nos. 1–4, 1 (1990).

    Google Scholar 

  10. M. K. Wu, Aerosol Sci. Technol. 25, 392 (1996).

    Article  CAS  Google Scholar 

  11. Yu. K. Tovbin, Molecular Theory of Adsorption in Porous Bodies (Fizmatlit, Moscow, 2012; CRC, Boca Raton, FL, 2017) [in Russian].

    Google Scholar 

  12. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids (Springer, Berlin, Gottinhen, Heidelberg, 1960).

    Google Scholar 

  13. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, London, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K., Zaitseva, E.S. & Rabinovich, A.B. Simulating the Surface Relief of Nanoaerosols Obtained via the Rapid Cooling of Droplets. Russ. J. Phys. Chem. 92, 587–596 (2018). https://doi.org/10.1134/S0036024418030317

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418030317

Keywords

Navigation