Skip to main content
Log in

Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle’s dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  2. P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  Google Scholar 

  3. F. Mugele and J.-C. Baret, J. Phys.: Condens. Matter 17, 705 (2005).

    Google Scholar 

  4. J. Morcos, J. Electroanal. Chem. 62, 313 (1975).

    Article  CAS  Google Scholar 

  5. Yu. I. Aleksandrov and V. P. Mashovets, Zh. Prikl. Khim. 39, 2591 (1966).

    CAS  Google Scholar 

  6. A. Fontana and R. Winand, J. Nucl. Mater. 35, 87 (1970).

    Article  CAS  Google Scholar 

  7. H. Vogt, J. Appl. Electrochem. 29, 137 (1999).

    Article  CAS  Google Scholar 

  8. N. P. Kulik, L. V. Sitnikov, L. M. Babushkina, et al., Rasplavy, No. 5, 37 (2006).

    Google Scholar 

  9. A. V. Frolov, A. O. Gusev, N. I. Shurov, et al., in Proceedings of the TMS Annual Meeting on Light Metals (The Minerals, Met. Mater. Soc., 2006), p. 645.

    Google Scholar 

  10. L. M. Babushkina, L. V. Sitnikov, N. P. Kulik, et al., Rasplavy, No. 6, 63 (2004).

    Google Scholar 

  11. G. V. Forsblom and E. G. Goldelenok, Tsvetn. Metall., No. 1, 43 (1958).

    Google Scholar 

  12. N. A. Uzikova, G. A. Kolyagin, V. G. Danilov, and I. A. Kedrinskii, Zh. Prikl. Khim. 52, 1249 (1979).

    CAS  Google Scholar 

  13. K. A. Aleksandrov, V. P. Stepanov, and M. V. Smirnov, Zh. Prikl. Khim. 54, 162 (1981).

    CAS  Google Scholar 

  14. L. Suski, A. Godula-Jopek, and J. Oblakowski, J. Electrochem. Soc. 146, 4048 (1998).

    Article  Google Scholar 

  15. V. S. Belyaev, L. M. Babushkina, I. V. Yakshevich, and V. P. Stepanov, Kolloidn. Zh. 57, 469 (1995).

    Google Scholar 

  16. V. P. Stepanov, I. V. Yakshevich, and V. S. Belyaev, Z. Phys. Chem. B 214, 359 (2000).

    CAS  Google Scholar 

  17. M. Matsumura and J. R. Selman, J. Electrochem. Soc. 139, 1255 (1992).

    Article  CAS  Google Scholar 

  18. J. M. Fisher, P. S. Bennett, J. F. Pignon, et al., J. Electrochem. Soc. 137, 1493 (1990).

    Article  CAS  Google Scholar 

  19. M. Kavase, Y. Mugikura, and T. Watanabe, J. Electrochem. Soc. 147, 854 (2000).

    Article  Google Scholar 

  20. R. W. Warren, Rev. Sci. Instrum. 36, 731 (1965).

    Article  CAS  Google Scholar 

  21. V. Yu. Shishkin and V. S. Mityaev, Izv. Akad. Nauk SSSR, Neorg. Mater. 18, 1917 (1982).

    CAS  Google Scholar 

  22. A. Ya. Gokhshtein, Dokl. Akad. Nauk SSSR 224, 1105 (1975).

    Google Scholar 

  23. M. V. Smirnov, K. A. Aleksandrov, and V. A. Khokhlov, Electrochim. Acta 22, 543 (1977).

    Article  CAS  Google Scholar 

  24. V. P. Stepanov, The Interphase Phenomena in Ionic Salt Melts (Nauka, Yekaterinburg, 1993) [in Russian].

    Google Scholar 

  25. O. K. Davtyan, Quantum Chemistry (Vyssh. Shkola, Moscow, 1962) [in Russian].

    Google Scholar 

  26. N. G. Bukun and R. A. Alekseeva, Elektrokhimiya 11, 1738 (1975).

    CAS  Google Scholar 

  27. S. I. Dokashenko, E. V. Kirillova, and V. P. Stepanov, Rasplavy, No. 4, 47 (2004).

    Google Scholar 

  28. E. V. Kirillova, S. I. Dokashenko, and V. P. Stepanov, Rasplavy, No. 4, 74 (2008).

    Google Scholar 

  29. E. V. Kirillova, S. I. Dokashenko, and V. P. Stepanov, Rasplavy, No. 5, 35 (2007).

    Google Scholar 

  30. V. P. Stepanov and V. S. Belyaev, Elektrokhimiya 30, 1115 (1994).

    CAS  Google Scholar 

  31. Yu. G. Pastukhov and V. P. Stepanov, Dokl. Akad. Nauk SSSR 307, 648 (1989).

    CAS  Google Scholar 

  32. S. Tazi, M. Salanne, Ch. Simon, et al., J. Phys. Chem. B 114, 8453 (2010).

    Article  CAS  Google Scholar 

  33. R. Puddephat, The Chemistry of Gold (Elsevier, Amsterdam, 1978; Mir, Moscow, 1982).

    Google Scholar 

  34. F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25, 31 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Stepanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, V.P. Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides. Russ. J. Phys. Chem. 92, 570–574 (2018). https://doi.org/10.1134/S0036024418030287

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418030287

Keywords

Navigation