Abstract
Conditions for the synthesis of three types nanoparticles (SnO2, Al2O3, and Ag) with typical sizes in the range of 4 to 10 nm and a performance of 0.4 g/h are employed in a pulsed-periodic gas discharge in an atmosphere of air. Spherical Ge nanoparticles with a characteristic size of 13 nm are synthesized by these means for the first time with a performance of around 10 mg/h. The specific energy consumption in the synthesis of nanoparticles is for these materials in the range of 2000 to 5000 kW h/kg. The prospects for using tinoxide nanoparticles in sensor components and jets of silver nanoparticles for aerosol printing are discussed. The merits and demerits of the pulsed gas-discharge method among other gas-phase approaches to the synthesis of nanoparticles are analyzed for the current level of development.
This is a preview of subscription content, access via your institution.
References
V. I. Roldugin, Russ. Chem. Rev. 69, 821 (2000).
R. A. Andrievski, Russ. Chem. Rev. 74, 1061 (2005).
R. A. Andrievski, Russ. Chem. Rev. 81, 549 (2012).
E. Yu. Bol’shagin and V. I. Roldugin, Theor. Found. Chem. Eng. 47, 538 (2013).
S. A. Harfenist, Z. L. Wang, M. M. Alvarez, et al., J. Phys. Chem. 100, 13904 (1996).
D. Vollath, J. Nanopart. Res. 10, 39 (2008).
Y. A. Kotov, J. Nanopart. Res. 5, 539 (2003).
V. V. Osipov, Y. A. Kotov, M. G. Ivanov, et al., Laser Phys. 16, 116 (2006).
N. S. Tabrizi, M. Ullmann, V. A. Vons, et al., J. Nanopart. Res. 11, 315 (2009).
T. V. Pfeiffer, J. Feng, and A. Schmidt-Ott, Adv. Powder Technol. 25, 56 (2014).
J. Feng, G. Biskos, and A. Schmidt-Ott, Sci. Rep. 5, 15788 (2015).
A. A. Efimov, V. V. Ivanov, A. V. Bagazeev, I. V. Beketov, I. A. Volkov, and S. V. Shcherbinin, Tech. Phys. Lett. 39, 1053 (2013).
V. V. Ivanov, A. A. Efimov, D. A. Mylnikov, A. A. Lizunova, A. V. Bagazeev, I. V. Beketov, and S. V. Shcherbinin, Tech. Phys. Lett. 42, 876 (2016).
A. Maisser, K. Barmpounis, M. B. Attoui, et al., Aerosol Sci. Technol. 49, 886 (2015).
Yu. A. Kotov, I. V. Beketov, A. I. Medvedev, and O. R. Timoshenkova, Nanotechnol. Russ. 4, 354 (2009).
Yu. A. Kotov, V. V. Osipov, M. G. Ivanov, O. M. Samatov, V. V. Platonov, E. I. Azarkevich, A. M. Murzakaev, and A. I. Medvedev, Tech. Phys. 47, 1420 (2002).
Yu. A. Kotov, V. V. Osipov, O. M. Samatov, M. G. Ivanov, V. V. Platonov, A. M. Murzakaev, E. I. Azarkevich, A. I. Medvedev, A. K. Shtolts, and O. R. Timoshenkova, Tech. Phys. 49, 352 (2004).
A. A. Efimov, I. A. Volkov, V. V. Ivanov, et al., Proc. Eng. 168, 1036 (2016).
G. F. Fine, L. M. Cavanagh, A. Afonja, et al., Sensors 10, 5469 (2010).
A. A. Efimov, G. N. Potapov, A. V. Nisan, et al., Results Phys. 7, 440 (2017).
J. Feng, E. Hontañón, M. Blanes, et al., ACS Appl. Mater. Interfaces 8, 14756 (2016).
V. A. Vons, A. Anastasopol, W. J. Legerstee, et al., Acta Mater. 59, 3070 (2011).
M. E. Messing, K. A. Dick, L. R. Wallenberg, et al., Gold Bull. 42, 20 (2009).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ivanov, V.V., Efimov, A.A., Myl’nikov, D.A. et al. Synthesis of Nanoparticles in a Pulsed-Periodic Gas Discharge and Their Potential Applications. Russ. J. Phys. Chem. 92, 607–612 (2018). https://doi.org/10.1134/S0036024418030093
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036024418030093