Skip to main content
Log in

Effect of Silica Nanoparticles on Dry Water Gas Hydrate Formation and Self-Preservation Efficiency

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect of silica concentration in dry water microdispersion on the kinetics of formation of methane hydrates and efficiency of their self-preservation was studied beyond the range of thermodynamic stability of hydrates below 273 K. For dry water used for the formation of gas hydrates, there is a certain concentration of silica that provides an optimum combination of high rate of formation and self-preservation efficiency of hydrates during their dissociation. Below this concentration, the rate of formation of methane hydrates in dry water significantly decreases with the silica content, while the self-preservation efficiency remains almost constant. Above this concentration, the formation rate changes insignificantly when the silica concentration increases, and the self-preservation efficiency abruptly decreases. Possible reasons for this behavior of hydrates were considered. It was found that the specific surface area of silica used to form dry water can significantly affect the formation rate of gas hydrates and their self-preservation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Binks and R. Murakami, Nat. Mater 5, 865 (2006).

    Article  CAS  Google Scholar 

  2. L. Forny, K. Saleh, I. Pezron, et al., Powder Technol. 189, 263 (2009).

    Article  CAS  Google Scholar 

  3. W. Wang, C. L. Bray, D. J. Adams, et al., J. Am. Chem. Soc. 130, 11608 (2008).

    Article  CAS  Google Scholar 

  4. B. O. Carter, W. Wang, D. J. Adams, et al., Langmuir 26, 3186 (2010).

    Article  CAS  Google Scholar 

  5. V. P. Mel’nikov, L. S. Podenko, A. N. Nesterov, A. O. Drachuk, N. S. Molokitina, and A. M. Reshetnikov, Dokl. Chem. 466, 53 (2016).

    Article  Google Scholar 

  6. K. Horiguchi, S. Watanabe, H. Moriya, et al., in Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, Scotland, UK, July 17–21, 2011, Paper No. P5.053.

    Google Scholar 

  7. G. Rehder, R. Eckl, M. Elfgen, et al., Energies 5, 2499 (2012).

    Article  CAS  Google Scholar 

  8. F. Farhang, A. V. Nguyen, and K. B. Sewell, Energy Fuels 28, 7025 (2014).

    Article  CAS  Google Scholar 

  9. L. S. Podenko, A. O. Drachuk, N. S. Molokitina, et al., Kriosfera Zemli 21 (2), 43 (2017).

    Google Scholar 

  10. V. A. Istomin and V. S. Yakushev, Gas Hydrates at Natural Conditions (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  11. P. Englezos, N. Kalogerakis, P. D. Dholabhai, et al., Chem. Eng. Sci. 42, 2657 (1987).

    Google Scholar 

  12. HDK® H17 Wacker Chemie AG. http://www.wacker.com/cms/en/products/product/product.jsp?product=9321.

  13. AEROSIL® R 812 S Fumed Silica. www.aerosil.com/www2/uploads/productfinder/AEROSIL-R-812-S-EN.pdf.

  14. AEROSIL® R 202 Fumed Silica. www.aerosil.com/www2/uploads/productfinder/AEROSIL-R- 202-EN.pdf.

  15. L. S. Podenko, A. N. Nesterov, A. O. Drachuk, et al., Zh. Fiz. Khim. 88, 1257 (2014).

    Google Scholar 

  16. Principles of Magnetic Resonance, Ed. by C. P. Sli-chter, Vol. 1 of Springer Series in Solid-State Sciences (Springer, Berlin, Heidelberg, 1990), p. 657.

  17. S. W. Provencher, Comput. Phys. Commun. 27, 229 (1982).

    Article  Google Scholar 

  18. L. S. Podenko, A. N. Nesterov, N. S. Komisarova, V. V. Shalamov, A. M. Reshetnikov, and E. G. Larionov, J. Appl. Spectrosc. 78, 260 (2011).

    Article  CAS  Google Scholar 

  19. G. Hu, Y. Ye, C. Liu, et al., Fuel Proces. Technol. 92, 1617 (2011).

    Article  CAS  Google Scholar 

  20. A. V. Il’dyakov, E. G. Larionov, A. Yu. Manakov, et al., Gazokhimiya 17 (1), 28 (2011).

    Google Scholar 

  21. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed. (CRC, Boca Raton, FL, 2008).

    Google Scholar 

  22. C. J. Taylor, K. T. Miller, K. A. Koh, and E. D. Sloan, Chem. Eng. Sci. 62, 6524 (2007).

    Article  CAS  Google Scholar 

  23. V. P. Melnikov, A. N. Nesterov, A. M. Reshetnikov, et al., Chem. Eng. Sci. 65, 906 (2010).

    Article  CAS  Google Scholar 

  24. Yu. F. Makogon, Hydrates of Natural Gases (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  25. V. P. Skripov and V. P. Koverda, Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Podenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podenko, L.S., Drachuk, A.O., Molokitina, N.S. et al. Effect of Silica Nanoparticles on Dry Water Gas Hydrate Formation and Self-Preservation Efficiency. Russ. J. Phys. Chem. 92, 255–261 (2018). https://doi.org/10.1134/S0036024418020188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418020188

Keywords

Navigation