Skip to main content
Log in

Thermodynamics of Dissolution for Crystalline Racemic Tartaric and Glutaric Acids and Isatin in KOH Aqueous Solutions at 298.15 K

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Enthalpies of dissolution are found for crystalline racemic tartaric and glutaric acids and isatin in water and in potassium hydroxide solutions at 298.15 K via direct calorimetry. The protolytic equilibria in isatin aqueous solutions are studied at 298.15 K and ionic strengths of 0.5 (relative to potassium nitrate) by potentiometric means. Standard enthalpies of formation are calculated for racemic tartaric and glutaric acids, isatin, and the products of their dissociation in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Crea, A. de Robertis, and S. Sammartano, J. Solution Chem. 33, 499 (2004).

    Article  CAS  Google Scholar 

  2. K. Burger, P. Sipos, M. Veber, et al., Inorg. Chim. Acta 152, 233 (1988).

    Article  CAS  Google Scholar 

  3. G. Choppin, A. Dadgar, and E. Rizkalla, Inorg. Chem. 25, 3581 (1986).

    Article  Google Scholar 

  4. H. Ito, Y. Ikegami, and Y. Suzuki, Bull. Chem. Soc. Jpn. 7, 3426 (1984).

    Article  Google Scholar 

  5. S. Limaye and M. Saxena, J. Indian Chem. Soc. 61, 448 (1984).

    CAS  Google Scholar 

  6. B. Mali and D. Sen, Indian J. Chem. A 20, 695 (1981).

    Google Scholar 

  7. A. Hamman, A. Olin, et al., Acta Chem. Scand. A 31, 384 (1977).

    Article  Google Scholar 

  8. U. Dash and B. Nayak, Austral. J. Chem. 28, 1377 (1975).

    Article  CAS  Google Scholar 

  9. A. Cassol, P. di Bernardo, and R. Portanova, Inorg. Chim. Acta 7, 353 (1973).

    Article  CAS  Google Scholar 

  10. E. Chubakova and N. Skorik, Zh. Neorg. Khim 18, 2723 (1973).

    CAS  Google Scholar 

  11. Yu. V. Konovalova and L. S. Kachkar’, Zh. Neorg. Khim. 15, 2964 (1970).

    Google Scholar 

  12. V. I. Gordienko and Yu. I. Mikhailyuk, Zh. Anal. Khim. 27, 1069 (1972).

    CAS  Google Scholar 

  13. P. G. Manning and S. Ramamoorthy, J. Inorg. Nucl. Chem. 34, 1997 (1972).

    Article  CAS  Google Scholar 

  14. A. Vanne and M. C. Bennaro, J. Inorg. Nucl. Chem. 37, 1443 (1975).

    Article  Google Scholar 

  15. I. Feldman, C. A. North, and H. B. Hunter, J. Phys. Chem. 64, 1224 (1960).

    Article  Google Scholar 

  16. C. W. Davies and B. E. Hoyle, J. Chem. Soc., 4134 (1953).

    Google Scholar 

  17. V. P. Vasil’ev, Thermodynamic Properties of Electrolyte Solutions (Vysshaya Shkola, Moscow, 1982) [in Russian].

    Google Scholar 

  18. J. J. Christensen and R. M. Izatt, J. Am. Chem. Soc. 89, 213 (1967).

    Article  CAS  Google Scholar 

  19. V. A. Borodin, V. P. Vasil’ev, and E. V. Kozlovskii, Mathematical Problems of Chemical Thermodynamics (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  20. P. P. Korostelev, Preparation of Solutions in Analytical Chemistry (Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  21. V. P. Vasil’ev, L. A. Kochergina, and O. N. Krutova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 46 (6), 69 (2003).

    Google Scholar 

  22. W. B. Parcker, Thermal Properties of Aqueous Uni-Univalent Electrolytes (NSRDS-NBS, Washington, DC, 1965), Vol. 2, p. 342.

    Google Scholar 

  23. D. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, New York, 1971).

    Google Scholar 

  24. A. A. Bugaevskii and B. A. Dunai, Zh. Anal. Khim. 26, 205 (1971).

    CAS  Google Scholar 

  25. A. V. Volkov, O. Yu. Platonycheva, O. N. Krutova, and V. G. Gradusov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 52 (4), 7 (2009).

    CAS  Google Scholar 

  26. V. P. Vasil’ev, V. A. Borodin, and S. B. Kopnyshev, Zh. Fiz. Khim. 65, 55 (1991).

    Google Scholar 

  27. A. N. Kizin and Yu. A. Lebedev, Dokl. Akad. Nauk SSSR 262, 914 (1982).

    CAS  Google Scholar 

  28. J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic, New York, 1970).

    Google Scholar 

  29. Thermal Constants of Substances, The Handbook, Ed. by V. P. Glushko (VINITI, Moscow, 1965–1971), No. 3 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Krutova.

Additional information

Original Russian Text © A.I. Lytkin, V.V. Chernikov, O.N. Krutova, V.E. Litvinenko, A.V. Volkov, S.A. Bychkova, I.A. Skvortsov, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 1, pp. 85–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytkin, A.I., Chernikov, V.V., Krutova, O.N. et al. Thermodynamics of Dissolution for Crystalline Racemic Tartaric and Glutaric Acids and Isatin in KOH Aqueous Solutions at 298.15 K. Russ. J. Phys. Chem. 92, 70–74 (2018). https://doi.org/10.1134/S0036024418010144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418010144

Keywords

Navigation