Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2666–2670 | Cite as

Development of Humidity Sensor Using Nanoporous Polycarbonate Membranes

  • Sunil Kumar
  • H. C. Jeon
  • T. W. Kang
  • Rajesh Kalia
  • J. K. Sharma
  • Sanjay Panwar
  • Sapna Kalia
  • Vandana Sharma
  • R. K. ChoubeyEmail author
Physical Chemistry of Surface Phenomena


In the present work, the effect of temperature and moisture has been studied on nano-porous polycarbonate membranes of size 15, 50, and 80 nm, respectively to formulate the calibration curves for the future development of humidity sensors. These studies were conducted for virgin as well as humid samples while the temperature range was kept from room temperature to 160°C. Interesting variations in the capacitance with pore size and temperature have been observed. Calibration curves demonstrate that nanoporous polycarbonate samples are one of the important candidates for developing humidity sensors. In addition surface behavior has also been studied for the selective samples to better understand the dielectric behavior for nascent as well as moisturized samples.


nano-porous polycarbonate humidity sensor capacitance dispersion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. M. Kulwicki, J. Am. Ceram. Soc. 74, 697 (1991).CrossRefGoogle Scholar
  2. 2.
    E. Traversa, Sens. Actuators B 23, 135 (1995).CrossRefGoogle Scholar
  3. 3.
    H. Arai and T. Seiyama, in Sensors: A Comprehensive Survey, Ed. by W. Gopel, J. Hesse, and J. N. Zemel (VCH, Weinheim, 1992), Vol.3.Google Scholar
  4. 4.
    B. Yang, B. Aksak, Q. Lin, and M. Sitti, Sens. Actuators B 114, 254 (2006).CrossRefGoogle Scholar
  5. 5.
    T. Nitta and S. Hayakama, IEEE Trans. Compon. Hybrids Manuf. Technol. 3, 237 (1980).CrossRefGoogle Scholar
  6. 6.
    S. J. Kim, J. Y. Park, S. H. Lee, and S. H. Yi, J. Phys. D: Appl. Phys. 33, 1781 (2000).CrossRefGoogle Scholar
  7. 7.
    E. J. Connolly, H. T. M. Pham, J. Groeneweg, P. M. Sarro, and P. J. French, Sens. Actuators B 100, 216 (2004).CrossRefGoogle Scholar
  8. 8.
    A. Tsigara, G. Mountrichas, K. Gatsouli, A. Nichelatti, S. Pispas, N. Madamopoulos, N. A. Vainos, H. L. Du, and F. Roubani-Kalantzopoulou, Sens. Actuators B 120, 481 (2007).CrossRefGoogle Scholar
  9. 9.
    C. P. L. Rubinger, C. R. Martins, M. A. de Paoli, and R. M. Rubinger, Sens. Actuators B 123, 42 (2007).CrossRefGoogle Scholar
  10. 10.
    E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, Sensors 2, 91 (2002).CrossRefGoogle Scholar
  11. 11.
    C. Laville and C. Pellet, IEEE Sensors J. 2, 96 (2002).CrossRefGoogle Scholar
  12. 12.
    C. Laville and C. Pellet, IEEE Trans. Biomed. Eng. 49, 1162 (2002).CrossRefGoogle Scholar
  13. 13.
    C. Y. Lee and G. B. Lee, J. Micromech. Microeng. 13, 620 (2003).CrossRefGoogle Scholar
  14. 14.
    U. Kang and K. D. Wise, IEEE Trans. Electron Dev. 47, 702 (2000).CrossRefGoogle Scholar
  15. 15.
    Y. L. Yang, L. H. Lo, I. Y. Huang, H. J. H. Chen, W. S. Huang, and S. R. S. Huang, Proc. IEEE Sensors 1, 511 (2002).CrossRefGoogle Scholar
  16. 16.
    A. Wu and M. J. Brett, Sens. Mater. 13, 399 (2001).Google Scholar
  17. 17.
    D. K. An and L. H. Mai, Proc. IEEE Sensors 1, 633 (2002).CrossRefGoogle Scholar
  18. 18.
    N. Taguchi, Jpn. Patent No. 45-38200 (1962).Google Scholar
  19. 19.
    M. E. Nicho, M. Trejo, A. Garcia-Valenzuela, J. M. Saniger, J. Palacios, and J. Hu, Sens. Actuators B 76, 18 (2001).CrossRefGoogle Scholar
  20. 20.
    V. V. Chabukswar, S. Pethkar, and A. A. Athawale, Sens. Actuators B 77, 657 (2001).CrossRefGoogle Scholar
  21. 21.
    M. Raimundo and R. Narayanaswamy, Sens. Actuators B 74, 60 (2001).CrossRefGoogle Scholar
  22. 22.
    C. W. Lin, B. J. Hwang, and C. R. Lee, Mater. Chem. Phys. 58, 114 (1999).CrossRefGoogle Scholar
  23. 23.
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
  24. 24.
    O. K. Varghese, M. Paulose, K. G. Ong, D. Gong, and E. C. Dickey, J. Mater. Res. 17, 1162 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Sunil Kumar
    • 1
  • H. C. Jeon
    • 1
  • T. W. Kang
    • 1
  • Rajesh Kalia
    • 2
  • J. K. Sharma
    • 2
  • Sanjay Panwar
    • 2
  • Sapna Kalia
    • 2
  • Vandana Sharma
    • 2
  • R. K. Choubey
    • 3
    Email author
  1. 1.Quantum Functional Semiconductor Research CenterDongguk UniversitySeoul-South Korea
  2. 2.Department of PhysicsMaharishi Markandeshwar UniversityMullana, AmbalaIndia
  3. 3.Department of Applied Physics, Amity Institute of Applied Sciences (AIAS)Amity University, Noida Campus, Sector-125NoidaIndia

Personalised recommendations