Skip to main content
Log in

DFT Theoretical Calculation of the Site Selectivity of Dihydroxylated (5, 0) Zigzag Carbon Nanotube

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Functionalization is an important method to change electrical and thermodynamic properties of carbon nanotubes. In this study, the effect of functionalization of a single-walled carbon nanotube (SWCNT) was investigated with the aid of density functional theory. For this case, a (5, 0) zigzag SWCNT model containing 60 C atoms with 10 hydrogen atoms added to the dangling bonds of the perimeter carbons was used. To model hydroxyl CNT two terminal H atoms were replaced by two –OH groups. All the functionalized CNTs are thermodynamically more stable and have higher dipole moment with respect to the pristine CNT. Depending on the positions of hydroxyl groups on CNT five isomers of C60H8(OH)2 were obtained. The structure of these five isomers and molecular properties such as the HOMO–LUMO gaps, the dipole moments, and the density of state were calculated. Our results indicate that the HOMO–LUMO gap strongly depends on the placement of the hydroxyl groups on the nanotubes. The isomers were hydroxyl groups locate on the anti-position show the highest distortions in the structure of the CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. A. Minett, F. Schüth, S. W. Sing, J. Weitkapmp, K. Atkinson, and S. Roth, in Handbook of Porous Solids (Wiley-VCH, Weinheim, 2002).

    Google Scholar 

  3. Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Nature 402, 273 (1999).

    Article  CAS  Google Scholar 

  4. O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, and G. Yue, Acc. Chem. Res. 35, 1045 (2002).

    Article  CAS  Google Scholar 

  5. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G Wallace, A. Mazzoldi, D. de Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999).

    Article  CAS  Google Scholar 

  6. N. Ferrer-Anglada, V. Gomis, Z. El-Hachemi, U. D. Weglikovska, M. Kaempgen, and S. Roth, Phys. Status Solidi 203, 1082 (2006).

    Article  CAS  Google Scholar 

  7. Z. Chen, J. Appenzeller, Y. M. Lin, et al., Science 311, 1735 (2006).

    Article  CAS  Google Scholar 

  8. D. A. Britz and A. N. Khlobystov, Chem. Soc. Rev. 35, 637 (2006).

    Article  CAS  Google Scholar 

  9. Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, Jpn. J. Appl. Phys. 44, 1621 (2005).

    Article  CAS  Google Scholar 

  10. M. E. Kose, B. A. Harruff, Y. Lin, L. M. Veca, F. Lu, and Y. P. Sun, J. Phys. Chem. B 110, 14032 (2006).

    Article  CAS  Google Scholar 

  11. P. Serp, M. Corrias, and P. Kalck, Appl. Catal. A 253, 337 (2003).

    Article  CAS  Google Scholar 

  12. M. V. Veloso, A. G. S. Filho, J. M. Filho, S. B. Fagan, and R. Mota, Chem. Phys. Lett. 430, 71 (2006).

    Article  CAS  Google Scholar 

  13. T. Kar, B. Adkim, X. Duan, and R. Pachter, ChemPhysLett. 423, 126 (2006).

    CAS  Google Scholar 

  14. C. G. Salzmann, S. A. Llewellyn, G. Tobias, M. H. Y. Ward, Y. Huh, and M. L. H. Green, Adv. Mater. 19, 883 (2007).

    Article  CAS  Google Scholar 

  15. J. Zhao, J. P. Lu, J. Han, and C. K. Yang, Appl. Phys. Lett. 82, 3746 (2003).

    Article  CAS  Google Scholar 

  16. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  17. M. J. Frisch et al., Gaussian 03, Revision E.01 (Gaussian Inc., Wallingford, CT, 2004).

    Google Scholar 

  18. Gaussview 03 (Gaussian Inc., Wallingford, CT, 2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mostaanzadeh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostaanzadeh, H., Abbasi, A. & Honarmand, E. DFT Theoretical Calculation of the Site Selectivity of Dihydroxylated (5, 0) Zigzag Carbon Nanotube. Russ. J. Phys. Chem. 91, 2636–2642 (2017). https://doi.org/10.1134/S0036024417130155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417130155

Keywords

Navigation