Skip to main content
Log in

Electronic structural properties of BiOF crystal and its oxygen vacancy from first-principles calculations

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

First-principles calculations are performed to investigate the crystal and electronic structures of BiOF crystal and its oxygen vacancy BiO7/8F. By analyzing the energy band structures, the total density of states and the partial densities of states, it is found that the band gaps for the perfect BiOF and BiO7/8F are 3.12 and 2.65 eV, respectively, which are smaller than the experiment value of 3.64 eV. There is a new electronic state within the forbidden band in the BiO7/8F, which could serve as a capture center for excited electrons, consequently improves the effective separation of electron-hole pairs, and makes the optical absorption band edge red shift. The calculated results demonstrate that the BiOF crystal and its oxygen vacancy BiO7/8F could be the potential application as photocatalytic semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Meng, Z. Hong, J. Arndt, M. Li, M. Zhi, F. Yang, and N. Wu, Nano Res. 5, 213 (2012).

    Article  CAS  Google Scholar 

  2. V. Perebeinos and J. Tersoff, Phys. Rev. Lett. 114, 085501 (2015).

    Article  CAS  Google Scholar 

  3. L. L. Niu, D. Huang, J. J. Du, Y. Wei, C. F. Hu, J. Y. Ye, and W. Y. Chen, Chem. J. Chin. Univ. 36, 1873 (2015).

    CAS  Google Scholar 

  4. M. X. Yang, J. Ma, Y. R. Sun, X. Z. Xiong, C. L. Li, Q. Li, and J. H. Chen, Chem. J. Chin. Univ. 35, 570 (2014).

    CAS  Google Scholar 

  5. L. An, G. H. Wang, Y. Cheng, L. Zhao, F. Gao, and Y. Cheng, Russ. J. Phys. Chem. A 89, 1878 (2015).

    Article  CAS  Google Scholar 

  6. D. F. Zhang and F. B. Zeng, Russ. J. Phys. Chem. A 85, 1077 (2011).

    Article  CAS  Google Scholar 

  7. J. Xing, X. G. Sun, and J. P. Qiu, Russ. J. Phys. Chem. A 89, 1108 (2015).

    Article  CAS  Google Scholar 

  8. Y. C. Chou, Comput. Theor. Chem. 1059, 51 (2015).

    Article  CAS  Google Scholar 

  9. A. Migani and D. J. Mowbray, Comput. Theor. Chem. 1040–1041, 259 (2014).

    Article  Google Scholar 

  10. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  11. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  12. K. Gumnathan, Int. J. Hydrogen Energy 29, 933 (2004).

    Article  Google Scholar 

  13. J. G. Yu, J. F. Xiong, B. Cheng, Y. Yu, and J. B. Wang, J. Solid State Chem. 178, 1968 (2005).

    Article  CAS  Google Scholar 

  14. Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B 110, 17790 (2006).

    Article  CAS  Google Scholar 

  15. T. Kako, Z. G. Zou, M. Katagiri, and J. H. Ye, Chem. Mater. 19, 198 (2007).

    Article  CAS  Google Scholar 

  16. T. J. Yan, J. L. Long, Y. S. Chen, X. X. Wang, D. Z. Li, and X. Z. Fu, C.R. Chim. 11, 101 (2008).

    Article  CAS  Google Scholar 

  17. Z. H. Li, Z. P. Xie, Y. F. Zhang, L. Wu, X. X. Wang, and X. Z. Fu, J. Phys. Chem. C 111, 18348 (2007).

    Article  CAS  Google Scholar 

  18. D. Z. Li and X. Z. Fu, Sci. Sin. Chim. 42, 415 (2012).

    Article  Google Scholar 

  19. Y. D. Hou, L. Wu, X. C. Wang, Z. X. Ding, Z. H. Li, and X. Z. Fu, J. Catal. 250, 12 (2007).

    Article  CAS  Google Scholar 

  20. H. Xue, Z. Li, L. Wu, Z. X. Ding, X. X. Wang, and X. Z. Fu, J. Phys. Chem. C 112, 5850 (2008).

    Article  CAS  Google Scholar 

  21. R. G. Chen, J. H. Bi, L. Wu, W. J. Wang, Z. H. Li, and X. Z. Fu, Inorg. Chem. 48, 9072 (2009).

    Article  CAS  Google Scholar 

  22. H. Q. Sun, Y. Bai, W. Q. Jin, and N. P. Xu, Solar Energy Mater. Solar Cells 92, 76 (2008).

    Article  CAS  Google Scholar 

  23. T. Bredowa and G. Pacchioni, Chem. Phys. Lett. 355, 417 (2002).

    Article  Google Scholar 

  24. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, J. Mol. Catal. A: Chem. 161, 205 (2000).

    Article  CAS  Google Scholar 

  25. R. Schaub, E. Wahlström, A. Rønnau, E. Lægsgaard, I. Stensgaard, and F. Besenbacher, Science 299, 377 (2003).

    Article  CAS  Google Scholar 

  26. M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).

    Article  CAS  Google Scholar 

  27. S. A. Chambers, T. Droubay, D. R. Jennison, and T. R. Mattsson, Science 297, 827 (2002).

    Article  CAS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  29. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  30. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. 220, 567 (2005).

    CAS  Google Scholar 

  31. M. C. Zhu, L. Hua, and F. F. Xiong, Russ. J. Phys. Chem. A 88, 722 (2014).

    Article  CAS  Google Scholar 

  32. J. Yang, X. R. Hou, P. F. Zhang, Y. F. Zhou, X. L. Xing, X. J. Ren, and Q. X. Yang, Comput. Theor. Chem. 1029, 48 (2014).

    Article  CAS  Google Scholar 

  33. X. C. Zhang, L. J. Zhao, C. M. Fan, Z. H. Liang, and P. D. Han, Comput. Mater. Sci. 61, 180 (2012).

    Article  CAS  Google Scholar 

  34. M. Djermouni, A. Zaoui, S. Kacimi, and B. Bouhafs, Comput. Mater. Sci. 49, 904 (2010).

    Article  CAS  Google Scholar 

  35. J. L. Soubeyroux, S. F. Matar, J. M. Reau, and P. Hagenmuller, Solid State Ionics 14, 337 (1984).

    Article  CAS  Google Scholar 

  36. W. Y. Su, J. Wang, Y. X. Huang, W. J. Wang, L. Wu, X. X. Wang, and P. Liu, Scripta Mater. 62, 345 (2010).

    Article  CAS  Google Scholar 

  37. M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Phys. Rev. B 54, 16317 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, C., Min, F. et al. Electronic structural properties of BiOF crystal and its oxygen vacancy from first-principles calculations. Russ. J. Phys. Chem. 91, 2425–2430 (2017). https://doi.org/10.1134/S0036024417120275

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417120275

Keywords

Navigation