Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 1, pp 57–65 | Cite as

Revealing the Influence of Silver in Ni–Ag Catalysts on the Selectivity of Higher Olefin Synthesis from Stearic Acid

  • V. Ya. Danyushevsky
  • V. Yu. Murzin
  • P. S. Kuznetsov
  • R. S. Shamsiev
  • E. A. Katsman
  • E. V. Khramov
  • Y. V. Zubavichus
  • A. S. Berenblyum
Chemical Kinetics and Catalysis

Abstract

Results on the conversion of stearic acid to olefins over Ni–Ag/γ-Al2O3 catalysts are presented. XANES and EXAFS experiments in situ and DFT calculations were applied to reveal the structure of active sites therein. It is shown that the introduction of Ag to Ni catalysts leads to an increase in the olefin yield. After a reduction in hydrogen (350°C, 3 h) alumina-supported nanoparticles of nickel sulfides and metallic Ag are formed. The role of metal hydrides formed during the reaction is extensively discussed.

Keywords

silver nickel higher olefins stearic acid heterogeneous catalysis structure-activity relationships renewable resources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Energy Outlook 2015, International Energy Agency. http://www.worldenergyoutlook.org/weo2015/.
  2. 2.
    A. S. Berenblyum, T. A. Podoplelova, R. S. Shamsiev, et al., Petrol. Chem. 51, 336 (2011).CrossRefGoogle Scholar
  3. 3.
    A. S. Berenblyum, V. Ya. Danyushevsky, E. A. Katsman, et al., Petrol. Chem. 53, 362 (2013).CrossRefGoogle Scholar
  4. 4.
    G. R. Lappin and J. D. Sauer, Alpha Olefins Applications Handbook (CRC, Boca Raton, FL, 1989).Google Scholar
  5. 5.
    S. C. Ardito, H. Ashjian, T. F. Degnan, et al., US Patent No. 5457254A (1995).Google Scholar
  6. 6.
    W. A. Fessler, US Patent No. 2653970A (1953).Google Scholar
  7. 7.
    E. Santillan-Jimenez, T. Morgan, J. Shoup, et al., Catal. Today 237, 136 (2014).CrossRefGoogle Scholar
  8. 8.
    E. Santillan-Jimenez and T. Morgan, J. Chem. Technol. Biot. 87, 1041 (2012).CrossRefGoogle Scholar
  9. 9.
    A. T. Madsen, E. H. Ahmed, C. H. Christensen, et al., Fuel. 90, 3433 (2011).CrossRefGoogle Scholar
  10. 10.
    B. Peng, Y. Yao, C. Zhao, and J. A. Lercher, Angew. Chem. 124, 2114 (2012).CrossRefGoogle Scholar
  11. 11.
    V. O. Dundich, S. A. Khromova, D. Yu. Ermakov, et al., Kinet. Catal. 51, 704 (2010).CrossRefGoogle Scholar
  12. 12.
    T. Morgan, D. Grubb, E. Santillan-Jimenez, and M. Crocker, Top. Catal. 53, 820 (2010).CrossRefGoogle Scholar
  13. 13.
    O. B. Ayodele, O. S. Togunwa, H. F. Abbas, and M. A. W. Daud, Energ. Convers. Manage. 88, 1104 (2014).CrossRefGoogle Scholar
  14. 14.
    P. Kumar, S. R. Yenumala, S. K. Maity, and D. Shee, Appl. Catal. A: Gen. 471, 28 (2014).CrossRefGoogle Scholar
  15. 15.
    P. Maki-Arvela, I. Kubickova, M. Snare, et al., Energ. Fuel. 21, 30 (2007).CrossRefGoogle Scholar
  16. 16.
    W. Li, Y. Gao, S. Yao, et al., Green Chem. 17, 4198 (2015).CrossRefGoogle Scholar
  17. 17.
    R. Stern and G. Ghillion, US Patent No. 4554397A (1985).Google Scholar
  18. 18.
    Z. H. Chonco, A. Ferreira, L. Lodya, et al., J. Catal. 307, 283 (2013).CrossRefGoogle Scholar
  19. 19.
    S. S. C. Chuang and S. I. Pien, J. Catal. 138, 536 (1992).CrossRefGoogle Scholar
  20. 20.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res. A. 603, 95 (2009).CrossRefGoogle Scholar
  21. 21.
    P. Hammersley, ESRF Internal Report No. ESRF97HA02T (1997).Google Scholar
  22. 22.
    PDF-2 Data Base, Sets 1-47 (JCPDS-Int. Centre for Diffraction Data, 1997).Google Scholar
  23. 23.
    B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005).CrossRefGoogle Scholar
  24. 24.
    M. Newville, J. Phys.: Conf. Ser. 430, 012007 (2013).Google Scholar
  25. 25.
    A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B 58, 7565 (1998).CrossRefGoogle Scholar
  26. 26.
    N. Laikov, Chem. Phys. Lett. 281, 151 (1997).CrossRefGoogle Scholar
  27. 27.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  28. 28.
    N. Laikov, Chem. Phys. Lett. 416, 116 (2005).CrossRefGoogle Scholar
  29. 29.
    J. N. Roelofsen, R. C. Peterson, and M. Raudsepp, Am. Mineral. 77, 522 (1992).Google Scholar
  30. 30.
    A. S. Berenblyum, T. A. Podoplelova, E. A. Katsman, et al., Kinet. Catal. 53, 595 (2012).CrossRefGoogle Scholar
  31. 31.
    S. Brillouet, E. Baltag, S. Brunet, and F. Richard, Appl. Catal. B 148–149, 201 (2014).CrossRefGoogle Scholar
  32. 32.
    Lubricants and Lubrication, Ed. by T. Mang and W. Dresel, 2nd ed. (Wiley-VCH, Weinheim, 2007), p. 65.Google Scholar
  33. 33.
    W. J. Kirkpatrick, Adv. Catal. 3, 329 (1951).Google Scholar
  34. 34.
    T. Baba, N. Komatsu, H. Sawada, et al., Langmuir 15, 7894 (1999).CrossRefGoogle Scholar
  35. 35.
    K. Tate, J. T. Nguyen, J. Bacsa, and J. P. Sadighi, Chem. — Eur. J. 21, 10160 (2015).CrossRefGoogle Scholar
  36. 36.
    M. R. Bullock, Comment. Inorg. Chem. 12, 1 (1991).CrossRefGoogle Scholar
  37. 37.
    A. S. Berenblyum, V. Ya. Danyushevsky, P. S. Kuznetsov, E. A. Katsman, and R. S. Shamsiev, Pet. Chem. 56, 663 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Ya. Danyushevsky
    • 1
  • V. Yu. Murzin
    • 2
  • P. S. Kuznetsov
    • 1
  • R. S. Shamsiev
    • 1
  • E. A. Katsman
    • 1
  • E. V. Khramov
    • 3
  • Y. V. Zubavichus
    • 3
  • A. S. Berenblyum
    • 1
  1. 1.Moscow Technological University, Institute of Fine Chemical TechnologiesMoscowRussia
  2. 2.Deutsches Elektronen-Synchrotron (DESY)HamburgGermany
  3. 3.National Research Center “Kurchatov Institute” (NRCKI), Kurchatov Synchrotron–Neutron Research ComplexMoscowRussia

Personalised recommendations