Skip to main content
Log in

Microwave-assisted Ni–La/γ-Al2O3 catalyst for benzene hydrogenation

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A series of Ni–La/γ-Al2O3 catalysts were prepared by adopting the methods of isometric impregnation and microwave impregnation. The catalysts were characterized with XRD, BET, and SEM, respectively. Inspecting the effects of adding La and the methods of impregnation on the hydrogenation activity of catalysts. The results show that adding a moderate amount of La promotes the dispersing of Ni on the carrier, the methods of microwave impregnation weaks the interaction between Ni and the carrier further, inhibits the formation of NiAl2O4, and the activity of catalyst prepared by the methods of microwave impregnation was significantly higher than that prepared by the methods of isometric impregnation. The hydrogenation activity of the Ni–La/γ-Al2O3 (WB) dipped with n(Ni): n(La) = 4: 1, microwave irradiation time 30 min with power 600W as well as calcined at 400°C exhibited the best performance. The conversion rate is 91.21% with reaction conditions: T = 160°C, p = 0.8 MPa, air speed 5 h–1, n(H2): n(benzene) = 2: 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, 4th ed. (Wiley-VCH, Weinheim, 2003).

    Book  Google Scholar 

  2. Guofang Sun, Xiaoguo Li, Yanan Fei, Jia Li, Jia Zhao, Zhiyu Sui, and Haibin Yu, Ind. Catal. 21, 8 (2013).

    CAS  Google Scholar 

  3. J. Struijk and J. Scholten, Appl. Catal. A 82, 277 (1992).

    Article  CAS  Google Scholar 

  4. M. Saeys, M.-F. Reyniers, M. Neurock, and G. Marin, J. Phys. Chem. B 109, 2064 (2005).

    Article  CAS  Google Scholar 

  5. P. G. Savva, K. Goundani, J. Vakros, K. Bourikas, Ch. Fountzoula, D. Vattis, A. Lycourghiotis, and C. Kordulis, Appl. Catal. B 79, 199 (2008).

    Article  CAS  Google Scholar 

  6. A. Jasik, R. Wojcieszak, S. Monteverdi, M. Ziolek, and M. M. Bettahar, J. Mol. Catal. A: Chem. 242, 81 (2005).

    Article  CAS  Google Scholar 

  7. H. X. Yang, S. Q. Song, R. C. Rao, X. Z. Wang, Q. Yu, and A. M. Zhang, J. Mol. Catal. A: Chem. 323, 33 (2010).

    Article  CAS  Google Scholar 

  8. A. Louloudi, J. Michalopoulos, N. H. Gangas, and N. Papayannakos, Appl. Catal. A 242, 41 (2003).

    Article  CAS  Google Scholar 

  9. M. Chettibi, A. G. Boudjahem, and M. Bettahar, Trans. Met. Chem. 36, 163 (2011).

    Article  CAS  Google Scholar 

  10. K. Y. Tsai, I. Wang, and T. C. Tsai, Catal. Today 166, 73 (2011).

    Article  CAS  Google Scholar 

  11. L. J. Simon, J. G. van Ommen, A. Jentys, and J. A. Lercher, J. Catal. 201, 60 (2001).

    Article  CAS  Google Scholar 

  12. C. Milone, G. Neri, A. Donato, and M. G. Musolino, J. Catal. 159, 253 (1996).

    Article  CAS  Google Scholar 

  13. Moussa Chettibi, Abdel-Ghani Boudjahem, and Mohammed Bettahar, Transit. Met. Chem. 36, 163 (2001).

    Article  Google Scholar 

  14. Ye Wan, Chao Chen, Weiming Xiao, Lijuan Jian, and Ning Zhang, Microporous Mesoporous Mater. 171, 9 (2013).

    Article  CAS  Google Scholar 

  15. Hongli Liu, Ruiqi Fang, Zhong Li, and Yingwei Li, Chem. Eng. Sci. 122, 350 (2015).

    Article  CAS  Google Scholar 

  16. H. Duan, D. Wang, Y. Kou, and Y. Li, Chem. Commun. 49, 303 (2013).

    Article  CAS  Google Scholar 

  17. L. Zhu, L. Zheng, K. Du, H. Fu, Y. Li, G. You, and B. H. Chen, RSC Adv. 3, 713 (2013).

    Article  CAS  Google Scholar 

  18. Lihua Zhu, Maohong Cao, Li Li, Hanlei Sun, and Yanqing Tang, Chem. Catal. Chem. 6, 2039 (2014).

    CAS  Google Scholar 

  19. T. Suzuki, H. Iwanami, and T. Yoshinari, Int. J. Hydrogen Energy 25, 119 (2000).

    Article  CAS  Google Scholar 

  20. X. Yu, S. Zhang, L. Wang, Q. Jiang, S. Li, and Z. Tao, Fuel 85, 1708 (2006).

    Article  CAS  Google Scholar 

  21. S. Natesakhawat, R. B. Watson, X. Wang, and U. S. Ozkan, J. Catal. 234, 496 (2005).

    Article  CAS  Google Scholar 

  22. M. C. Sanchez-Sanchez, R. M. Navarro, and J. L. G. Fierro, Catal. Today 129, 336 (2007).

    Article  CAS  Google Scholar 

  23. Masanori Sugisawa, Kazuhiro Takanabe, Makoto Harada, Jun Kubota, and Kazunari Domen, Fuel Process. Technol. 92, 21 (2011).

    Article  CAS  Google Scholar 

  24. A. Zhao, W. Ying, H. Zhang, H. Ma, and D. Fang, Energy Sources A 36, 1049 (2014).

    Article  CAS  Google Scholar 

  25. S. Damyanova, B. Pawele, K. Arishtirova, and J. L. G. Fierro, Int. J. Hydrogen Energy 37, 15966 (2012).

    Article  CAS  Google Scholar 

  26. Kah Weng Siew, Hua Chyn Lee, Jolius Gimbun, and Chin Kui Cheng, Bull. Chem. React. Eng. Catal. 8, 160 (2013).

    Article  CAS  Google Scholar 

  27. Kah Weng Siew, Hua Chyn Lee, Jolius Gimbun, and Chin Kui Cheng, J. Energy Chem. 23, 15 (2014).

    Article  CAS  Google Scholar 

  28. Y. J. Bang, J. G. Seo, and I. K. Song, Int. J. Hydrogen Energy 36, 8307 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjun Liu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, S. & Xu, P. Microwave-assisted Ni–La/γ-Al2O3 catalyst for benzene hydrogenation. Russ. J. Phys. Chem. 91, 2098–2102 (2017). https://doi.org/10.1134/S0036024417110334

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417110334

Keywords

Navigation