Russian Journal of Physical Chemistry A

, Volume 91, Issue 11, pp 2188–2194 | Cite as

Hybrid materials based on polymethylsilsesquioxanes containing Fe, Pt, and Fe–Pt metallic nanoparticles

  • A. Yu. Vasil’kov
  • D. A. Migulin
  • A. V. Naumkin
  • Ya. V. Zubavichus
  • A. V. Budnikov
  • O. G. Ellert
  • Yu. V. Maksimov
  • A. M. Muzafarov
Physical Chemistry of Nanoclusters and Nanomaterials


New hybrid materials based on Pt, Fe, and Pt–Fe nanoparticles stabilized in a matrix of polymethylsilsesquioxane nanogel and ultrahigh molecular weight polyethylene (UHMWPE) were prepared. Metal vapor synthesis was used to produce mono- and bimetallic nanoparticles. It was shown that organosilicon nanogel effectively stabilizes Pt nanoparticles with an average size of 0.9 nm. Using the nanogel results in the formation of superparamagnetic Fe particles 3–5 nm in size that consist of ferromagnetic Fe0 core and antiferromagnetic shells of Fe oxides. It is established that using an organosilicon matrix in the formation of Pt-Fe/UHMWPE systems helps reduce the average particle size of Fe in the material from 6.5 to 4.5 nm and narrow their particle size distribution. The composition, magnetic and electronic characteristics of the nanocomposites are studied via transmission electron microscopy, X-ray photoelectron spectroscopy, Mössbauer spectroscopy, XANES, and EXAFS.


metal vapor synthesis metallic nanoparticles hybride materials polymethylsilsesquioxane magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Jaumann, V. Rebrov, V. Kazakova, et al., Macromol. Chem. Phys. 204, 1014 (2003).CrossRefGoogle Scholar
  2. 2.
    X. Zhu, M. Jaumann, C. Moeller, et al., Macromolecules 39, 1701 (2006).CrossRefGoogle Scholar
  3. 3.
    C. Drohmann, M. Moeller, O. Gorbatsevich, et al., J. Polym. Sci., Part A: Polym. Chem. 38, 741 (2000).CrossRefGoogle Scholar
  4. 4.
    C. Schlenk, A. W. Kleij, H. Frey, et al., Angew. Chem., Int. Ed. Engl. 39, 3445 (2000).CrossRefGoogle Scholar
  5. 5.
    A. Yu. Vasil’kov, D. A. Migulin, A. V. Naumkin, et al., Mendeleev Commun. 26, 187 (2016).CrossRefGoogle Scholar
  6. 6.
    L. N. Nikitin, A. Yu. Vasil’kov, M. Banchero, L. Manna, A. V. Naumkin, V. L. Podshibikhin, S. S. Abramchuk, M. I. Buzin, A. A. Korlyukov, and A. R. Khokhlov, Russ. J. Phys. Chem. A 85, 1190 (2011).CrossRefGoogle Scholar
  7. 7.
    M. S. Rubina, A. A. Kamitov, Ya. V. Zubavichus, et al., Appl. Surf. Sci. 366, 365 (2016).CrossRefGoogle Scholar
  8. 8.
    M. V. Tsodikov, O. G. Ellert, S. A. Nikolaev, et al., Chem. Eng. J. 309, 628 (2017).CrossRefGoogle Scholar
  9. 9.
    E. E. Said-Galiev, A. Yu. Vasil’kov, A. Yu. Nikolaev, A. I. Lisitsyn, A. V. Naumkin, I. O. Volkov, S. S. Abramchuk, O. L. Lependina, A. R. Khokhlov, E. V. Shtykova, K. A. Dembo, and C. Erkey, Russ. J. Phys. Chem. A 86, 1602 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Yu. Vasil’kov, A. V. Naumkin, I. O. Volkov, et al., Surf. Interface Anal. 42, 559 (2010).CrossRefGoogle Scholar
  11. 11.
    C. Evangelisti, E. Schiavi, L. A. Aronica, et al., J. Catal. 286, 224 (2012).CrossRefGoogle Scholar
  12. 12.
    B. L. V. Prasad, S. I. Stoeva, C. M. Sorensen, et al., J. Am. Chem. Soc. 125, 10488 (2003).CrossRefGoogle Scholar
  13. 13.
    G. Uccello-Barretta, F. Balzano, C. Evangelisti, et al., J. Organomet. Chem. 693, 1276 (2008).CrossRefGoogle Scholar
  14. 14.
    D. Migulin, E. Tatarinova, I. Meshkov, et al., J. Polym. Int, 65, 72 (2015).CrossRefGoogle Scholar
  15. 15.
    B. D. Karstedt, US Patent No. 3775452 (1973).Google Scholar
  16. 16.
    G. Vitulli, C. Evangelisti, F. Ciardelli, P. Salvadori, and F. Rocchi, EP Patent No. 1797949 A1, Bull. No. 25 (2007).Google Scholar
  17. 17.
    G. Uccello-Barretta, C. Evangelisti, P. Raffa, et al., J. Organomet. Chem. 694, 1813 (2009).CrossRefGoogle Scholar
  18. 18.
    A. Yu. Vasil’kov, B. A. Zachernyuk, Z. N. Karpikov, I.O. Volkov, Ya. V. Zubavichus, A. A. Veligzhanin, A. A. Chernyshov, M. I. Buzin, L. N. Nikitin, and V. I. Nedel’kin, Russ. J. Appl. Chem. 80, 2136 (2007).CrossRefGoogle Scholar
  19. 19.
    S. Laurent, D. Forge, M. Port, et al., Chem. Rev. 108, 2064 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Yu. Vasil’kov, Yu. V. Maksimov, L. N. Nikitin, I. P. Suzdalev, A. V. Naumkin, S. S. Abramchuk, E. M. Tolstopyatov, and P. N. Grakovich, Russ. J. Phys. Chem. A 87, 985 (2013).CrossRefGoogle Scholar
  21. 21.
    H. Zeng, J. Li, J. P. Liu, et al., Nature 420, 395 (2002).CrossRefGoogle Scholar
  22. 22.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res. A 603, 95 (2009).CrossRefGoogle Scholar
  23. 23.
    A. P. Krasnov, E. E. Said-Galiev, A. Yu. Vasil’kov, et al., RF Patent No. 2354668 (2009).Google Scholar
  24. 24.
    Y. X. Li and K. J. Klabunde, Hyperfine Interact. 41, 665 (1988).CrossRefGoogle Scholar
  25. 25.
    J. J. Schneider, N. Czap, J. Hagen, et al., Chem.-Eur. J. 6, 4305 (2000).CrossRefGoogle Scholar
  26. 26.
    J. Nogués, J. Sort, V. Langlais, et al., Phys. Rep. 422, 65 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. Yu. Vasil’kov
    • 1
  • D. A. Migulin
    • 2
  • A. V. Naumkin
    • 1
  • Ya. V. Zubavichus
    • 3
  • A. V. Budnikov
    • 1
  • O. G. Ellert
    • 4
  • Yu. V. Maksimov
    • 5
  • A. M. Muzafarov
    • 1
    • 2
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  3. 3.National Research Center Kurchatov InstituteMoscowRussia
  4. 4.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  5. 5.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations