Skip to main content
Log in

Mathematical model for the growth of phases in binary multiphase systems upon isothermic annealing

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A phenomenological mathematical model of the formation and growth of phases in a binary multiphase system with allowance for factors influencing the process of diffusion in a binary system is presented. It is shown that phases can grow for a certain time at different ratios between diffusion parameters according to a parabolic law that depends on the duration of isothermic annealing. They then slow their growth after successor phases appear at their interface with one component and can completely disappear from a diffusion layer or begin to grow again, but only at a rate slower than during their initial formation. The dependence of the thickness of each phase layer in a multiphase diffusion zone on the duration of isothermic annealing and the ratio between the diffusion parameters in neighboring phases is obtained. It is established that a certain ratio between the phase growth and rates of dissolution with allowance for the coefficients of diffusion in each phase and the periods of incubation can result in the complete disappearance of one phase as early as the onset of the growth of phase nuclei and be interpreted as a process of reaction diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner and S. Schottky, Z. Phys. Chem. B 11, 163 (1930).

  2. A. Fry, Stahl Eisen, 1039 (1923).

    Google Scholar 

  3. V. Z. Bugakov, Diffusion in Metals and Alloys (Gostekhizdat, Leningrad, 1949) [in Russian].

    Google Scholar 

  4. W. Seith, Diffusion in Metallen (Springer, Berlin, 1955).

    Book  Google Scholar 

  5. S. D. Gertsriken and I. Ya. Dekhtyar, Diffusion in Metals and Alloys in Solid Phase (GIFML, Moscow, 1960) [in Russian].

    Google Scholar 

  6. L. N. Larikov, V. R. Ryabov, and V. M. Fal’chenko, Diffusion Processes in Solid-Phase Welding of Materials (Mashinostroenie, Moscow, 1975; Am. Publ., New York, 1984).

    Google Scholar 

  7. Yu. D. Tret’yakov, Solid-State Reactions (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  8. K. P. Gurov, B. A. Kartashkin, and Yu. E. Ugaste, Mutual Diffusion in Multiphase Metal Systems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  9. A. G. Zakharov, S. A. Bogdanov, Yu. B. Kakurin, and N. A. Kakurina, Inzh. Vestn. Dona 35 (2-1), 6 (2015).

    Google Scholar 

  10. N. F. Lashko and S. V. Lashko, Brazing of Metals (Mashinostroenie, Moscow, 1988) [in Russian].

    Google Scholar 

  11. L. I. Roslyakova and I. N. Roslyakov, Uprochn. Tekhnol. Pokryt., No. 4 (112), 32 (2014).

    Google Scholar 

  12. P. M. Robinson and M. B. Beaver, in Intermetallic Compounds, Ed. by J. H. Westbrook (Wiley, New York, 1967).

  13. I. E. Petrunin, I. Yu. Markova, and A. S. Ekatova, Metallography of Brazing (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  14. V. A. Alekseev, A. F. Bykov, N. V. Gel’fond, et al., RF Patent No. 2082821 (1997).

  15. S. G. Ivanov, M. A. Gur’ev, and A. M. Gur’ev, Aktual. Probl. Mashinostroen., No. 2, 416 (2015).

    Google Scholar 

  16. D. A. Prokoshkin, Element Diffusion in Solid Iron: Chemical and Thermal Methods of Steel Processing (Moscow, Leningrad, 1938) [in Russian].

    Google Scholar 

  17. A. P. Chernyshev and V. V. Ovchinnikov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 2, 48 (1998).

    Google Scholar 

  18. F. van Loo and G. Rieck, Acta Metallurg. 21, 61 (1973).

    Article  CAS  Google Scholar 

  19. M. Ganseen and G. Rieck, Trans. Met. Soc. AJME 239, 1372 (1967).

    Google Scholar 

  20. E. J. Clark, Welding J. 38, 251 (1959).

    Google Scholar 

  21. V. I. Borisov and V. T. Borisov, Fiz. Met. Metalloved. 42, 496 (1976).

    Google Scholar 

  22. A. I. Epishin, T. Link, A. O. Rodin, et al., Phys. Met. Metallogr. 116, 175 (2015).

    Article  Google Scholar 

  23. A. R. Chelyadinskii, Vestn. Belorus. Univ., Ser. 1: Fiz. Mat. Inform., No. 2, 45 (2015).

    Google Scholar 

  24. L. A. Molokhina, Fiz. Khim. Obrab. Mater., No. 1, 123 (1986).

    Google Scholar 

  25. L. A. Molokhina, Fiz. Khim. Obrab. Mater., No. 2, 106 (1986).

    Google Scholar 

  26. S. G. Ekhilevskii, O. V. Golubeva, E. P. Potapenko, and S. A. Ol’shannikov, Vestn. Polots. Univ., Ser. C: Fundam. Nauki, No. 4, 94 (2015).

  27. L. A. Molokhina, Svar. Proizvod., No. 6, 20 (1983).

    Google Scholar 

  28. L. A. Molokhina and Yu. S. Dolgov, in Increasing of Efficiency in Brazed Structures Production (MDNTP im. F.E. Dzerzhinskogo, Moscow, 1983), p. 30 [in Russian].

    Google Scholar 

  29. L. A. Molokhina and O. I. Tikhomirova, in Solders for Modern Materials Soldering (IES im. E. O. Patona, Kiev, 1985), p. 57 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kaplunov.

Additional information

Original Russian Text © L.A. Molokhina, V.E. Rogalin, S.A. Filin, I.A. Kaplunov, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 9, pp. 1468–1475.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molokhina, L.A., Rogalin, V.E., Filin, S.A. et al. Mathematical model for the growth of phases in binary multiphase systems upon isothermic annealing. Russ. J. Phys. Chem. 91, 1635–1641 (2017). https://doi.org/10.1134/S0036024417090217

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417090217

Keywords

Navigation