Russian Journal of Physical Chemistry A

, Volume 91, Issue 9, pp 1635–1641 | Cite as

Mathematical model for the growth of phases in binary multiphase systems upon isothermic annealing

  • L. A. Molokhina
  • V. E. Rogalin
  • S. A. Filin
  • I. A. Kaplunov
Chemical Thermodynamics and Thermochemistry


A phenomenological mathematical model of the formation and growth of phases in a binary multiphase system with allowance for factors influencing the process of diffusion in a binary system is presented. It is shown that phases can grow for a certain time at different ratios between diffusion parameters according to a parabolic law that depends on the duration of isothermic annealing. They then slow their growth after successor phases appear at their interface with one component and can completely disappear from a diffusion layer or begin to grow again, but only at a rate slower than during their initial formation. The dependence of the thickness of each phase layer in a multiphase diffusion zone on the duration of isothermic annealing and the ratio between the diffusion parameters in neighboring phases is obtained. It is established that a certain ratio between the phase growth and rates of dissolution with allowance for the coefficients of diffusion in each phase and the periods of incubation can result in the complete disappearance of one phase as early as the onset of the growth of phase nuclei and be interpreted as a process of reaction diffusion.


diffusion phase phase interface multiphase system isothermic annealing mathematical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Wagner and S. Schottky, Z. Phys. Chem. B 11, 163 (1930).Google Scholar
  2. 2.
    A. Fry, Stahl Eisen, 1039 (1923).Google Scholar
  3. 3.
    V. Z. Bugakov, Diffusion in Metals and Alloys (Gostekhizdat, Leningrad, 1949) [in Russian].Google Scholar
  4. 4.
    W. Seith, Diffusion in Metallen (Springer, Berlin, 1955).CrossRefGoogle Scholar
  5. 5.
    S. D. Gertsriken and I. Ya. Dekhtyar, Diffusion in Metals and Alloys in Solid Phase (GIFML, Moscow, 1960) [in Russian].Google Scholar
  6. 6.
    L. N. Larikov, V. R. Ryabov, and V. M. Fal’chenko, Diffusion Processes in Solid-Phase Welding of Materials (Mashinostroenie, Moscow, 1975; Am. Publ., New York, 1984).Google Scholar
  7. 7.
    Yu. D. Tret’yakov, Solid-State Reactions (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  8. 8.
    K. P. Gurov, B. A. Kartashkin, and Yu. E. Ugaste, Mutual Diffusion in Multiphase Metal Systems (Nauka, Moscow, 1981) [in Russian].Google Scholar
  9. 9.
    A. G. Zakharov, S. A. Bogdanov, Yu. B. Kakurin, and N. A. Kakurina, Inzh. Vestn. Dona 35 (2-1), 6 (2015).Google Scholar
  10. 10.
    N. F. Lashko and S. V. Lashko, Brazing of Metals (Mashinostroenie, Moscow, 1988) [in Russian].Google Scholar
  11. 11.
    L. I. Roslyakova and I. N. Roslyakov, Uprochn. Tekhnol. Pokryt., No. 4 (112), 32 (2014).Google Scholar
  12. 12.
    P. M. Robinson and M. B. Beaver, in Intermetallic Compounds, Ed. by J. H. Westbrook (Wiley, New York, 1967).Google Scholar
  13. 13.
    I. E. Petrunin, I. Yu. Markova, and A. S. Ekatova, Metallography of Brazing (Metallurgiya, Moscow, 1976) [in Russian].Google Scholar
  14. 14.
    V. A. Alekseev, A. F. Bykov, N. V. Gel’fond, et al., RF Patent No. 2082821 (1997).Google Scholar
  15. 15.
    S. G. Ivanov, M. A. Gur’ev, and A. M. Gur’ev, Aktual. Probl. Mashinostroen., No. 2, 416 (2015).Google Scholar
  16. 16.
    D. A. Prokoshkin, Element Diffusion in Solid Iron: Chemical and Thermal Methods of Steel Processing (Moscow, Leningrad, 1938) [in Russian].Google Scholar
  17. 17.
    A. P. Chernyshev and V. V. Ovchinnikov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 2, 48 (1998).Google Scholar
  18. 18.
    F. van Loo and G. Rieck, Acta Metallurg. 21, 61 (1973).CrossRefGoogle Scholar
  19. 19.
    M. Ganseen and G. Rieck, Trans. Met. Soc. AJME 239, 1372 (1967).Google Scholar
  20. 20.
    E. J. Clark, Welding J. 38, 251 (1959).Google Scholar
  21. 21.
    V. I. Borisov and V. T. Borisov, Fiz. Met. Metalloved. 42, 496 (1976).Google Scholar
  22. 22.
    A. I. Epishin, T. Link, A. O. Rodin, et al., Phys. Met. Metallogr. 116, 175 (2015).CrossRefGoogle Scholar
  23. 23.
    A. R. Chelyadinskii, Vestn. Belorus. Univ., Ser. 1: Fiz. Mat. Inform., No. 2, 45 (2015).Google Scholar
  24. 24.
    L. A. Molokhina, Fiz. Khim. Obrab. Mater., No. 1, 123 (1986).Google Scholar
  25. 25.
    L. A. Molokhina, Fiz. Khim. Obrab. Mater., No. 2, 106 (1986).Google Scholar
  26. 26.
    S. G. Ekhilevskii, O. V. Golubeva, E. P. Potapenko, and S. A. Ol’shannikov, Vestn. Polots. Univ., Ser. C: Fundam. Nauki, No. 4, 94 (2015).Google Scholar
  27. 27.
    L. A. Molokhina, Svar. Proizvod., No. 6, 20 (1983).Google Scholar
  28. 28.
    L. A. Molokhina and Yu. S. Dolgov, in Increasing of Efficiency in Brazed Structures Production (MDNTP im. F.E. Dzerzhinskogo, Moscow, 1983), p. 30 [in Russian].Google Scholar
  29. 29.
    L. A. Molokhina and O. I. Tikhomirova, in Solders for Modern Materials Soldering (IES im. E. O. Patona, Kiev, 1985), p. 57 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. A. Molokhina
    • 1
  • V. E. Rogalin
    • 1
    • 2
  • S. A. Filin
    • 3
  • I. A. Kaplunov
    • 1
  1. 1.Tver State UniversityTverRussia
  2. 2.OAO Astrophysics, National Center for Laser Systems and ComplexesMoscowRussia
  3. 3.Plekhanov University of EconomicsMoscowRussia

Personalised recommendations