Skip to main content
Log in

Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The heat capacities and thermal diffusivities of ethyl esters of liquid n-alkane acids C n H2n–1O2C2H5 with the number of carbon atoms in the parent acid n = 10, 11, 12, 14, and 16 are measured. The heat capacities are measured using a DSC 204 F1 Phoenix heat flux differential scanning calorimeter (Netzsch, Germany) in the temperature range of 305–375 K. Thermal diffusivities are measured by means of laser flash method on an LFA-457 instrument (Netzsch, Germany) at temperatures of 305–400 K. An equation is derived for the dependence of the molar heat capacities of the investigated esters on temperature. It is shown that the dependence of molar heat capacity C p,m (298.15 K) on n (n = 1–6) is close to linear. The dependence of thermal diffusivity on temperature in the investigated temperature range is described by a first-degree polynomial, but thermal diffusivity a (298.15 K) as a function of n has a minimum at n = 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Srivastava and R. Prasad, Renew. Sustainanle Energy Rev. 4, 111 (2000).

    Article  CAS  Google Scholar 

  2. S. P. Singh and D. Singh, Renew. Sustainanle Energy Rev. 14, 200 (2010).

    Article  CAS  Google Scholar 

  3. Biomass to Biofuels: Strategies for Global Industries, Ed. by A. A. Vertes, N. Qureshi, H. Yukawa, and H. P. Blaschek (Wiley, Chichester, 2010).

  4. M. Zábranský, V. Růžička, V. Majer, and E. S. Domalski, Heat Capacity of Liquids, Critical Review, and Recommended Values, Monograph No. 6. (Am. Chem. Soc., Washington, DC, 1996), Vols. 1, 2.

  5. M. Zábranský, V. Růžička, and E. S. Domalski, J. Phys. Chem. Ref. Data 30, 1199 (2002).

    Article  Google Scholar 

  6. M. Zábranský, Z. Kolska, V. Růžička, and E. S. Domalski, J. Phys. Chem. Ref. Data 39, 013103–1 (2010).

    Article  Google Scholar 

  7. D. H. Zaitsau, Ya. U. Paulechka, A. V. Blokhin, et al., J. Chem. Eng. Data 54, 3026 (2009).

    Article  CAS  Google Scholar 

  8. M. Dzida, S. Jężak, J. Sumara, M. Żarska, and P. Góralski, Fuel 111, 165 (2013).

  9. M. Dzida, S. Jężak, J. Sumara, M. Żarska, and P. Góralski, J. Chem. Eng. Data 58, 1955 (2013).

    Article  CAS  Google Scholar 

  10. L. E. Agafonova, R. M. Varushchenko, A. I. Druzhinina, and O. V. Polyakova, J. Chem. Thermodyn. 47, 120 (2012).

    Article  CAS  Google Scholar 

  11. L. E. Agafonova, R. M. Varushchenko, A. I. Druzhinina, O. V. Polyakova, and Yu. S. Kolesov, Russ. J. Phys. Chem. A 85, 1516 (2011).

    Article  CAS  Google Scholar 

  12. J. C. van Miltenburg and H. A. J. Oonk, J. Chem. Eng. Data 50, 1348 (2005).

    Article  Google Scholar 

  13. G. Kh. Mukhamedzyanov and A. G. Usmanov, Thermal Conductivity of Liquids (Khimiya, Leningrad, 1971) [in Russian].

  14. Reference Book on Thermal Conductivity of Liquids and Gases, Ed. by N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and E. E. Totskii (Energoatomizdat, Moscow, 1990) [in Russian].

  15. M. A. Stephens and W. S. Tamplin, J. Chem. Eng. Data 24, 81 (1979).

    Article  CAS  Google Scholar 

  16. G. W. H. Hohne, W. F. Hemminger, and H. F. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, Heidelberg, 2003).

  17. H. J. Lee, PhD Thesis (Purdue Univ., West Lafayette, IN, 1975).

  18. D. Ambrose, C. Tsonopoulos, E. D. Nikitin, et al., J. Chem. Eng. Data 60, 3444 (2015).

    Article  CAS  Google Scholar 

  19. E. D. Nikitin and A. P. Popov, Fuel 166, 502 (2016).

    Article  CAS  Google Scholar 

  20. L. E. Agafonova, Cand. Sci. (Chem.) Dissertation (Lomonosov Mosc. State Univ., Moscow, 2011).

  21. M. J. van Bommel, H. A. J. Oonk, and J. C. van Miltenburg, J. Chem. Eng. Data 49, 1036 (2004).

    Article  Google Scholar 

  22. B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed. (McGraw-Hill, New York, 2001).

  23. H. F. Costa, R. L. Gardes, I. Johnson, et al., J. Chem. Eng. Data 54, 256 (2009).

    Article  CAS  Google Scholar 

  24. Ya.-W. Sheu and Ch.-H. Tu, Chem. Eng. Data 50, 1706 (2005).

    Article  CAS  Google Scholar 

  25. B. Marongiu, S. Porcedda, and R. Valenti, Fluid Phase Equilib. 145, 99 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Bogatishcheva.

Additional information

Original Russian Text © N.S. Bogatishcheva, M.Z. Faizullin, E.D. Nikitin, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 9, pp. 1484–1490.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatishcheva, N.S., Faizullin, M.Z. & Nikitin, E.D. Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components. Russ. J. Phys. Chem. 91, 1647–1653 (2017). https://doi.org/10.1134/S0036024417090084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417090084

Keywords

Navigation