Skip to main content
Log in

Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Understanding the interaction properties of biological materials with ZnO NPs is fundamental interest in the field of biotechnological applications as well as in the formation of optoelectronic devices. In this research, the binding of ZnO NPs and chlorogenic acid (CGA) were investigated using fluorescence quenching, UV–Vis absorption spectroscopy, Fourier transform infrared (FTIR), Raman spectroscopy, scanning electron microscopy (TEM), and dynamic light scattering (DLS) techniques. The study results indicated the fluorescence quenching between ZnO NPs and CGA rationalized in terms of static quenching mechanism or the formation of nonfluorescent CGA–ZnO. From fluorescence quenching spectral analysis the binding constant (K a ), number of binding sites (n), and thermodynamic properties, were determined. The quenching constants (K sv) and binding constant (K a ), decrease with increasing the temperature and their binding sites n are 2. The thermodynamic parameters determined using Van’t Hoff equation indicated binding occurs spontaneously involving the hydrogen bond and van der Walls forces played the major role in the reaction of ZnO NPs with CGA. The Raman, SEM, DLS, and Zeta potential measurements were also indicated the differences in the structure, morphology and sizes of CGA, ZnO NPs, and their corresponding CGA–ZnO due to adsorption of CGA on the surface of ZnO NPs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, Chem. Mater. 13, 4395 (2001).

    Article  CAS  Google Scholar 

  2. R. Könenkamp, L. Dloczik, K. Ernst, and C. Olesch, Phys. E: Low-Dim. Syst. Nanostruct. 14, 219 (2002).

    Article  Google Scholar 

  3. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 16, 1009 (2004).

    Article  CAS  Google Scholar 

  4. S. J. Yang and C. R. Park, Nanotechnology 19, 035609 (2008).

    Article  Google Scholar 

  5. E. R. Waclawik, J. Chang, A. Ponzoni, et al., Beilstein J. Nanotechnol. 3, 368 (2012).

    Article  Google Scholar 

  6. Z. Deng, M. Chen, A. Gu, and L. Wu, J. Phys. Chem. B 112, 16 (2008).

    Article  CAS  Google Scholar 

  7. J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, Expert Opin. Drug Deliv. 7, 1063 (2010).

    Article  CAS  Google Scholar 

  8. T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, Mol. Pharm. 2, 194 (2005).

    Article  CAS  Google Scholar 

  9. K. Cho, X. Wang, S. Nie, Z. Chen, and D. M. Shin, Clin. Cancer Res. 14, 1310 (2008).

    Article  CAS  Google Scholar 

  10. M. Ohgaki, T. Kizuki, M. Katsura, and K. Yamashita, J. Biomed. Mater. Res. 57, 366 (2001).

    Article  CAS  Google Scholar 

  11. X. Wei, W. Wang, and K. Chen, J. Phys. Chem. C 117, 23716 (2013).

    Article  CAS  Google Scholar 

  12. L. C. Trugo and R. Macrae, Food Chem. 15, 219 (1984).

    Article  CAS  Google Scholar 

  13. H. Sakakibara, Y. Honda, S. Nakagawa, H. Ashida, and K. Kanazawa, J. Agric. Food Chem. 51, 571 (2003).

    Article  CAS  Google Scholar 

  14. Y. Sato, S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, and K. Iseli, Int. J. Pharm. 403, 136 (2011).

    Article  CAS  Google Scholar 

  15. A. A. Almeida, A. Farah, D. A. M. Silva, E. A. Nunam, and M. B. A. Gloria, J. Agric. Food Chem. 54, 8738 (2006).

    Article  CAS  Google Scholar 

  16. U.-H. Jin, J.-Y. Lee, S.-K. Kang, J.-K. Kim, W.-H. Park, J.-G. Kim, S.-K. Moon, and C.-H. Kim, Life Sci. 77, 2760 (2005).

    Article  CAS  Google Scholar 

  17. G. F. Wang, L. P. Shi, Y. D. Ren, Q. F. Liu, H. F. Liu, R. J. Zhang, Z. Li, F. H. Zhu, P. L. He, W. Tang, P. Z. Tao, C. Li, W. M. Zhao, and J. P. Zuo, Antiviral Res. 83, 186 (2009).

    Article  CAS  Google Scholar 

  18. C.-W. Wan, C. N.-Y. Wong, W.-K. Pin, M. H.-Y. Wong, C.-Y. Kwok, R. Y.-K. Chan, P. H.-F. Yu, and S.-W. Chan, Phytother. Res. 27, 545 (2013).

    Article  CAS  Google Scholar 

  19. M. D. Santos, M. C. Almeida, N. P. Lopes, and G. E. P. Souza, Biol. Pharm. Bull. 29, 2236 (2006).

    Article  Google Scholar 

  20. R. A. Sperling and W. J. Parak, Phil. Trans. R. Soc. A 368, 1333 (2010).

    Article  CAS  Google Scholar 

  21. J. Zhou, N. S. Xu, and Z. L. Wang, Adv. Mater. 18, 2432 (2006).

    Article  CAS  Google Scholar 

  22. S. T. Teklemichael and M. D. McCluskey, J. Phys. Chem. C 116, 17248 (2012).

    Article  CAS  Google Scholar 

  23. M. Buchholz, Q. Li, H. Noei, A. Nefedov, Y. Wang, M. Muhler, K. Fink, and C. Wöll, Top. Catal. 58, 174 (2015).

    Article  CAS  Google Scholar 

  24. S. Dutta and B. Nly, J. Nanobiotechnol. 10, 29 (2012).

    Article  CAS  Google Scholar 

  25. G. Mandal, S. Bhattacharya, and T. Ganguly, Chem. Phys. Lett. 472, 128 (2009).

    Article  CAS  Google Scholar 

  26. A. Bhogale, N. Patel, P. Sarpotdar, J. Mariam, P. M. Dongre, A. Miotello, et al., Colloid Surf. B 102, 257 (2013).

    Article  CAS  Google Scholar 

  27. A. Belay, H. K. Kim, and Y.-H. Hwang, J. Lumin. (in press). doi 10.1002/bio.3007

  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1999).

    Book  Google Scholar 

  29. E. J. Bowen, Fluorescence of Solutions (Longmans, New York, 1953).

    Google Scholar 

  30. C. A. Parker, Photoluminescence of Solutions (Elsevier, New York, 1968).

    Google Scholar 

  31. F. Morales, A. Cartelat, A. Alvarez-Fernandez, I. Moya, and Z. G. Cerovic, J. Agric. Food Chem. 53, 9668 (2005).

  32. K.-C. Chou and S. P. Jiang, Sci. Sinica 27, 664 (1974).

    Google Scholar 

  33. A. Rajeshwari, S. Pakrashi, S. Dalai, S. Madhumita, V. Iswarya, N. Chandrasekaran, et al., J. Lumin. 145, 859 (2014).

    Article  CAS  Google Scholar 

  34. A. S. Al-Kady, M. Gaber, M. M. Hussein, and E. Z. M. Ebeid, Spectrochim. Acta A 83, 398 (2011).

    Article  CAS  Google Scholar 

  35. J. L. Kang, Y. Liu, M. X. Xie, S. Li, M. Jiang, and Y. D. Wang, Biochim. Biophys. Acta 1674, 205 (2004).

    Article  CAS  Google Scholar 

  36. P. D. Ross and S. Subramanian, Biochemistry 20, 3096 (1981).

    Article  CAS  Google Scholar 

  37. X. Wang, X. Yu, X. Xue, J. Yu, and X. Zhao, Appl. Phys. Lett. 91, 031908 (2007).

    Article  Google Scholar 

  38. S. Singh and M. S. R. Rao, Phys. Rev. B 80, 045210 (2009).

    Article  Google Scholar 

  39. J. Serrano, A. H. Romero, F. J. Manjo’n, R. Lauck, M. Cardona, and A. Rubio, Phys. Rev. B 69, 094306 (2004).

    Article  Google Scholar 

  40. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).

    Article  CAS  Google Scholar 

  41. N. Biswas, S. Kapoor, H. S. Mahal, and T. Mukherjee, Chem. Phys. Lett. 444, 338 (2007).

    Article  CAS  Google Scholar 

  42. P. J. Eravuchira, R. M. El-Abassy, S. Deshpande, M. F. Matei, S. Mishra, P. Tandon, N. Kuhnert, and A. Materny, Vibrat. Spectrosc. 61, 10 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abebe Belay.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belay, A., Kim, H.K. & Hwang, YH. Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles. Russ. J. Phys. Chem. 91, 1781–1790 (2017). https://doi.org/10.1134/S0036024417090023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417090023

Keywords

Navigation