Skip to main content
Log in

Electrooxidation of ethanol on platinum nanoparticles supported by ZrO2 nanotube matrix as a new highly active electrode

  • Colloid Chemistry and Electrochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Platinum nanoparticles/ZrO2 nanotubes/Zr electrode (Pt-NPs/ZrO2-NTs/Zr) was fabricated by electroplating of platinum nanoparticles (Pt-NPs) on the ZrO2 nanotube arrays. ZrO2-NTs were prepared by anodizing in an electrolyte containing dimethylformamide (DMF), glycerol and ammonium fluoride (NH4F). The morphology and structure of ZrO2-NTs and Pt-NPs/ZrO2-NTs/Zr electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The results indicated that ZrO2-NTs involve individual tubes with the diameter of 50–90 nm. In addition, Pt-NPs were homogeneously deposited on the surface of ZrO2-NTs with the size range of 10–20 nm. Cyclic voltammetry (CV) and chronoamperometry (CA) methods were used to study the electro-catalytic properties of Pt-NPs/ZrO2-NTs/Zr and flat Pt electrodes for ethanol oxidation. Experiments revealed the Pt-NPs/ZrO2-NTs/Zr electrode to have higher electro catalytic activity and better stability for ethanol oxidation when compared to flat Pt electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D. P. Wilkinson, J. Power Sources 155, 95 (2006).

    Article  CAS  Google Scholar 

  2. N. Sarkar, S. K. Ghosh, S. Bannerjee, and K. Aikat, Renew. Energy 37, 19 (2012).

    Article  CAS  Google Scholar 

  3. S. Stevanovic, D. Tripkovic, J. Rogan, D. Minic, A. Gavrilovic, A. Tripkovic, and V. M. Jovanovic, J. Phys. Chem. A 85, 2239 (2011).

    Google Scholar 

  4. H. Song, X. Qiu, X. Li, F. Li, W. Zhu, and L. Chen, J. Power Sources 170, 50 (2007).

    Article  CAS  Google Scholar 

  5. B. Abida, L. Chirchi, S. Baranton, T. W. Napporn, H. Kochkar, J.-M. Leger, and A. Ghorbel, Appl. Catal. B: Environ. 106, 609 (2011).

    Article  CAS  Google Scholar 

  6. ZhiDong Qi, Li-Li Li, Qian-Shan Chen, Can-Cheng Guo, and Gang Yu, J. Phys. Chem. A 89, 1459 (2014).

    Google Scholar 

  7. P. Guo, W. Xu, S. Zhu, X. Yang, and A. Inoue, Ionics (Kiel) 21, 2863 (2015).

    Article  CAS  Google Scholar 

  8. Y.-H. Qin, H.-H. Yang, R.-L. Lv, W.-G. Wang, and C.-W. Wang, Electrochim. Acta 106, 372 (2013).

    Article  CAS  Google Scholar 

  9. Z. Xu, J. Yu, and G. Liu, Electrochem. Commun. 13, 1260 (2011).

    Article  CAS  Google Scholar 

  10. Y. Q. Liang, Z. D. Cui, S. L. Zhu, Y. Liu, and X. J. Yang, J. Catal. 278, 276 (2011).

    Article  CAS  Google Scholar 

  11. C. Xu, P. Kang Shen, and Y. Liu, J. Power Sources 164, 527 (2007).

    Article  CAS  Google Scholar 

  12. P. J. Kulesza, I. S. Pieta, I. A. Rutkowska, A. Wadas, D. Marks, K. Klak, L. Stobinski, and J. A. Cox, Electrochim. Acta 110, 474 (2013).

    Article  CAS  Google Scholar 

  13. H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Adv. Mater. 16, 1197 (2004).

    Article  CAS  Google Scholar 

  14. J. Bao, D. Xu, Q. Zhou, Z. Xu, Y. Feng, and Y. Zhou, Chem. Mater. 14, 4709 (2002).

    Article  CAS  Google Scholar 

  15. M. G. Hosseini, S. A. S. Sajjadi, and M. M. Momeni, Surf. Eng. 23, 419 (2007).

    Article  CAS  Google Scholar 

  16. L. V. Taveira, J. M. Macák, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, J. Electrochem. Soc. 152, B405 (2005).

    Article  CAS  Google Scholar 

  17. J. L. Rosa, A. Robin, R. Z. Nakazato, M. B. Ribeiro, M. P. Piassa, and M. B. Silva, Surf. Eng. 30, 115 (2014).

    Article  CAS  Google Scholar 

  18. A. Zielinski, P. Antoniuk, and K. Krzysztofowicz, Surf. Eng. 30, 643 (2014).

    Article  CAS  Google Scholar 

  19. M. G. Hosseini, M. M. Momeni, and M. Faraji, Surf. Eng. 27, 784 (2011).

    Article  CAS  Google Scholar 

  20. H. Yin, H. Liu, and W. Z. Shen, Nanotechnology 21, 035601 (2010).

    Article  CAS  Google Scholar 

  21. H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Chem. Phys. Lett. 410, 188 (2005).

    Article  CAS  Google Scholar 

  22. H. Tsuchiya and P. Schmuki, Electrochem. Commun. 6, 1131 (2004).

    Article  CAS  Google Scholar 

  23. M. G. Hosseini, V. Daneshvari-Esfahlan, and R. Ordikhani-Seyedlar, Corros. Eng. Sci. Technol. 50, 533 (2015).

    Article  Google Scholar 

  24. M. G. Hosseini, V. Daneshvari-Esfahlan, and H. Maleki-Ghaleh, J. Mater. Eng. Perform. doi 10.1007/s11665-016-1904-z

  25. L. R. F. Allen and J. Bard, Electrochemical Methods Fundamentals and Applications, 2nd ed. (Wiley, New York, 2001).

    Google Scholar 

  26. D. K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms (VCH, New York, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Hosseini.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordikhani-Seyedlar, R., Hosseini, M.G. & Daneshvari-Esfahlan, V. Electrooxidation of ethanol on platinum nanoparticles supported by ZrO2 nanotube matrix as a new highly active electrode. Russ. J. Phys. Chem. 91, 1586–1591 (2017). https://doi.org/10.1134/S0036024417080246

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417080246

Keywords

Navigation