Skip to main content
Log in

Molecular dynamics study of ionic liquid confined in silicon nanopore

  • Short Communications
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations was carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like silicon nanopore with pore size of 5.5 nm. It is clearly shown that the mass and number densities of the confined ILs are oscillatory, high density layers are also formed in the vicinity of the silicon surface, which indicates the existence of solid-like high density IL layers. The orientational investigation shows that the imidazolium ring of [BMIM] cation lies preferentially flat on the surface of the silicon pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are significantly slower than those observed in bulk systems. Our results suggest that the interactions between the pore walls and the ILs can strongly affect the structural and dynamical properties of the confined ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Welton, Chem. Rev. 99, 2071 (1999).

    Article  CAS  Google Scholar 

  2. J. D. Holbrey and K. R. Seddon, Clean. Prod. Proc. 1, 223 (1999).

    Google Scholar 

  3. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed. 39, 3772 (2000).

    Article  CAS  Google Scholar 

  4. K. Okubo, M. Shirai, and C. Yokoyama, Tetrahedron Lett. 43, 7115 (2002).

    Article  CAS  Google Scholar 

  5. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2003), p.103.

    Google Scholar 

  6. M. Petkovic, K. R. Seddon, L. P. N. Rebelo, and C. Pereira Silva, Chem. Soc. Rev. 40, 1383 (2011).

    Article  CAS  Google Scholar 

  7. T. Fischer, A. Sethi, T. Welton, and J. Woolf, Tetrahedron Lett. 40, 793 (1999).

    Article  CAS  Google Scholar 

  8. S. Lee, A. Ogawa, M. Kanno, H. Nakamoto, T. Yasuda, and M. Watanabe, J. Am. Chem. Soc. 132, 9764 (2010).

    Article  CAS  Google Scholar 

  9. A. Eilmes and P. Kubisiak, J. Phys. Chem. B 117, 12583 (2013).

    Article  CAS  Google Scholar 

  10. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and M. Graetzel, J. Am. Chem. Soc. 125, 1166 (2003).

    Article  CAS  Google Scholar 

  11. C. Coll, R. H. Labrador, R. M. Manez, J. Soto, F. Sancenon, and M. Segui, Chem. Commun., 3033 (2005).

  12. K. Lunstroot, K. Driesen, P. Nockemann, C. Gorller-Walrand, K. Binnemans, S. Bellayer, J. L. Bideau, and A. Vioux, Chem. Mater. 18, 5711 (2006).

    Article  CAS  Google Scholar 

  13. A. Gupta, Y. L. Verma, R. K. Singh, and S. Chandra, J. Phys. Chem. C 118, 1530 (2014).

    Article  CAS  Google Scholar 

  14. S. M. Chathoth, E. Mamontov, P. F. Fulvio, X. Wang, G. A. Baker, S. Dai, and D. J. Wesolowski, Eur. Phys. Lett. 102, 16004 (2013).

    Article  Google Scholar 

  15. M. L. Sha, G. Z. Wu, Y. S. Liu, Z. F. Tang, and H. P. Fang, J. Phys. Chem. C 113, 4618 (2009).

    Article  CAS  Google Scholar 

  16. Y. Shim and H. J. Kim, ACS Nano 4, 2345 (2010).

    Article  CAS  Google Scholar 

  17. Q. Dou, M. L. Sha, H. Y. Fu, and G. Z. Wu, ChemPhysChem 11, 2438 (2010).

    Article  CAS  Google Scholar 

  18. S. Aparicio and M. Atilhan, J. Phys. Chem. C 116, 12055 (2012).

    Article  CAS  Google Scholar 

  19. W. Shi and D. R. Luebke, Langmuir 29, 5563 (2013).

    Article  CAS  Google Scholar 

  20. B. Coasne, L. Viau, and A. Vioux, J. Phys. Chem. Lett. 2, 1150 (2011).

    Article  CAS  Google Scholar 

  21. R. Singh, N. N. Rajput, and X. X. He, Phys. Chem. Chem. Phys. 15, 16090 (2013).

    Article  CAS  Google Scholar 

  22. J. Monk, R. Singh, and F. R. Hung, J. Phys. Chem. C 115, 3034 (2011).

    Article  CAS  Google Scholar 

  23. S. M. Chen, G. Z. Wu, M. L. Sha, and S. R. Huang, J. Am. Chem. Soc. 129, 2416 (2007).

    Article  CAS  Google Scholar 

  24. S. M. Chen, Y. S. Liu, H. Y. Fu, Y. X. He, C. Li, W. Huang, Z. Jiang, and G. Z. Wu, J. Phys. Chem. Lett. 3, 1052 (2012).

    Article  CAS  Google Scholar 

  25. R. Göbel, P. Hesemann, J. Weber, E. Möller, A. Friedrich, S. Beuermann, and A. Taubert, Phys. Chem. Chem. Phys. 11, 3653 (2009).

    Article  Google Scholar 

  26. J. N. C. Lopes, J. Deschamps, and A. A. H. Padua, J. Phys. Chem. B 108, 2038 (2004).

    Article  CAS  Google Scholar 

  27. K. Dong, G. H. Zhou, X. M. Liu, X. Q. Yao, S. J. Zhang, and A. Lyubartsev, J. Phys. Chem. C 113, 10013 (2009).

    Article  CAS  Google Scholar 

  28. M. L. Sha, G. Z. Wu, Y. S. Liu, Z. F. Tang, and H. P. Fang, J. Phys. Chem. C 113, 2918 (2009).

    Google Scholar 

  29. B. Hess, C. Kutzner, D. van der Spoel, and E. J. Lindahl, Chem. Theory Comput. 4, 435 (2008).

    Article  CAS  Google Scholar 

  30. Y. L. Wang, A. Laaksonen, and Z. Y. Lu, Phys. Chem. Chem. Phys. 15, 13559 (2013).

    Article  CAS  Google Scholar 

  31. C. Pinilla, M. G. del Popolo, J. Kohanoff, and R. M. J. Lynden-Bell, Phys. Chem. B 111, 4877 (2007).

    Article  CAS  Google Scholar 

  32. A. M. Smith, K. R. J. Lovelock, N. N. Gosvami, P. Licence, and A. Dolan, J. Phys. Chem. Lett. 4, 378 (2013).

    Article  CAS  Google Scholar 

  33. N. N. Rajput, J. Monk, R. Singh, and F. R. J. Hung, Phys. Chem. C 116, 5169 (2012).

    Article  CAS  Google Scholar 

  34. R. Singh, J. Monk, and F. R. Hung, J. Phys. Chem. C 114, 15478 (2010).

    Article  CAS  Google Scholar 

  35. O. Asuaki, I. Tomonori, M. Tadahiro, K. Hiroyuki, H. Shiníchi, and S. Kosuke, Electrochemistry 81, 808 (2013).

    Article  Google Scholar 

  36. N. N. Rajput, J. Monk, and F. R. Hung, J. Phys. Chem. C 116, 14504 (2012).

    Article  CAS  Google Scholar 

  37. N. N. Rajput, J. Monk, and F. R. Hung, J. Phys. Chem. C 118, 1540 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Sha.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.S., Sha, M.L. & Cai, K.Y. Molecular dynamics study of ionic liquid confined in silicon nanopore. Russ. J. Phys. Chem. 91, 974–978 (2017). https://doi.org/10.1134/S0036024417050156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417050156

Navigation