Skip to main content
Log in

Estimating electron affinity from the lifetime of negative molecular ions: Cycloheptatriene derivatives

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Cycloheptatriene derivatives are studied by means of resonance electron capture negative ion mass spectrometry (REC NIMS). The average lifetimes of molecular negative ions (NIs) are measured with respect to electron autodetachment. Using the Arrhenius approach, electron affinity EAa of the molecules under study is estimated, and the effective temperature of the resulting negative molecular ions is determined as a function of the electron energy. It is assumed that the dissociation of negative molecular ions in the ground electronic state is a process similar to that of the thermal degradation of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Khvostenko, Negative-Ion Mass Spectrometry in Organic Chemistry (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  2. E. Illenberger and B. M. Smirnov, Phys. Usp. 41, 651 (1998).

    Article  Google Scholar 

  3. P. Kebarle and S. Chowdhury, Chem. Rev. 87, 513 (1987).

    Article  CAS  Google Scholar 

  4. S. Chowdhury, E. P. Grimsrud, and P. Kebarle, J. Phys. Chem. 91, 2551 (1987).

    Article  CAS  Google Scholar 

  5. E. D. D’sa, W. E. Wentworth, and E. C. M. Chen, J. Phys. Chem. 92, 285 (1988).

    Article  Google Scholar 

  6. W. E. Wentworth, L. W. Kao, and R. S. Becker, J. Phys. Chem. 79, 1161 (1975).

    Article  CAS  Google Scholar 

  7. E. P. Grimsrud, G. Caldwell, S. Chowdhury, and P. Kebarle, J. Am. Chem. Soc. 107, 4627 (1985).

    Article  CAS  Google Scholar 

  8. R. R. Corderman and W. C. Lineberger, Ann. Rev. Phys. Chem. 30, 347 (1979).

    Article  CAS  Google Scholar 

  9. C. Desfrancois, V. Periquet, S. A. Lyapustina, et al., J. Chem. Phys. 111, 4569 (1999).

    Article  CAS  Google Scholar 

  10. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, et al., Rapid Commun. Mass Spectrom. 128, 1580 (2014).

    Article  Google Scholar 

  11. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, et al., Rapid Commun. Mass Spectrom. 29, 910 (2015).

    Article  CAS  Google Scholar 

  12. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, et al., J. Chem. Phys. 142, 174308 (2015).

    Article  CAS  Google Scholar 

  13. A. A. Makarov, A. L. Malinovsky, and E. A. Ryabov, Phys. Usp. 55, 977 (2012).

    Article  CAS  Google Scholar 

  14. D. W. McCamant, P. Kukura, and R. A. Mathies, J. Phys. Chem. A 107, 8208 (2003).

    Article  CAS  Google Scholar 

  15. H. W. Schranz, S. Nordholm, and B. C. Freasier, Chem. Phys. 108, 69 (1986).

    Article  CAS  Google Scholar 

  16. C. D. Cooper, W. T. Naff, and R. N. Compton, J. Chem. Phys. 63, 2752 (1975).

    Article  CAS  Google Scholar 

  17. G.-Z. Zhu and L.-S. Wang, J. Chem. Phys. 143, 221102 (2015).

    Article  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  19. A. Rosspeintner, B. Lang, and E. Vauthey, Ann. Rev. Phys. Chem. 64, 247 (2013).

    Article  CAS  Google Scholar 

  20. V. V. Yudanov, V. A. Mikhailova, and A. I. Ivanov, J. Phys. Chem. A 116, 4010 (2012).

    Article  CAS  Google Scholar 

  21. A. S. Vorob’ev, S. A. Pshenichnyuk, N. L. Asfandiarov, and E. P. Nafikova, Tech. Phys. 59, 1277 (2014).

    Article  Google Scholar 

  22. Yu. V. Tomilov, D. N. Platonov, R. F. Salikov, and G. P. Okonnishnikova, Tetrahedron 64, 10201 (2008).

    Article  CAS  Google Scholar 

  23. Yu. V. Tomilov, D. N. Platonov, and G. P. Okonnishnikova, Tetrahedron Lett. 50, 5605 (2009).

    Article  CAS  Google Scholar 

  24. S. A. Pshenichnyuk, A. S. Vorob’ev, and A. Modelli, J. Chem. Phys. 135, 184301 (2011).

    Article  Google Scholar 

  25. D. Edelson, J. E. Griffiths, and K. B. McAfee, J. Chem. Phys. 37, 917 (1962).

    Article  CAS  Google Scholar 

  26. E. P. Nafikova, N. L. Asfandiarov, A. I. Fokin, and G. S. Lomakin, J. Exp. Theor. Phys. 95, 605 (2002).

    Article  CAS  Google Scholar 

  27. D. D. Clarke and C. A. Coulson, J. Chem. Soc. A, 169 (1969).

  28. H. Estrada, L. S. Cederbaum, and W. Domcke, J. Chem. Phys. 84, 152 (1986).

    Article  CAS  Google Scholar 

  29. G. A. Gallup, J. Chem. Phys. 99, 827 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Asfandiarov.

Additional information

Original Russian Text © N.L. Asfandiarov, S.A. Pshenichnyuk, A.S. Vorob’ev, E.P. Nafikova, V.K. Mavrodiev, I.I. Furlei, V.A. Dokichev, D.N. Platonov, A.Yu. Belyy, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 5, pp. 880–886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfandiarov, N.L., Pshenichnyuk, S.A., Vorob’ev, A.S. et al. Estimating electron affinity from the lifetime of negative molecular ions: Cycloheptatriene derivatives. Russ. J. Phys. Chem. 91, 915–920 (2017). https://doi.org/10.1134/S0036024417050041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417050041

Keywords

Navigation