Skip to main content
Log in

Role of humic substances in the formation of nanosized particles of iron corrosion products

  • Nanomaterials and Environment
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The corrosion of metallic iron in aqueous solutions of humic substances (HS) with limited access to air is studied. The HS are found to exhibit multiple functions. Acid–base, redox, and surfactant properties, along with the ability to form complexes with iron in solution, are displayed in the corrosion process. Partial reduction of the HS during the corrosion reaction and their adsorption onto the main corrosion product (Fe3O4 nanoparticles) are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Neubauer, W. D. C. Schenkeveld, K. L. Plathe, et al., Sci. Total Environ. 461–462, 108 (2013).

    Article  Google Scholar 

  2. M. Davranche, A. Dia, M. Fakih, et al., Chem. Geol. 335, 24 (2013).

    Article  CAS  Google Scholar 

  3. T. Ben-Moshe, S. Frenk, I. Dror, et al., Chemosphere 90, 640 (2013).

    Article  CAS  Google Scholar 

  4. R. Angelico, A. Ceglie, H. Ji-Zheng, et al., Chemosphere 99, 239 (2014).

    Article  CAS  Google Scholar 

  5. R. Wagai, L. M. Mayer, K. Kitayama, et al., Biogeochemistry 112, 95 (2013).

    Article  CAS  Google Scholar 

  6. A. Piepenbrock, C. Schroder, and A. Kappler, Environ. Sci. Technol. 48, 1656 (2014).

    Article  CAS  Google Scholar 

  7. R. Krachler, R. F. Krachler, G. Wallner, et al., Mar. Chem. 174, 85 (2015).

    Article  CAS  Google Scholar 

  8. H. Peng, N. Liang, H. Li, et al., Environ. Pollut. 204, 191 (2015).

    Article  CAS  Google Scholar 

  9. N. Tomasi, T. Mimmo, R. Terzano, et al., Biol. Fertil. Soils 50, 973 (2014).

    Article  CAS  Google Scholar 

  10. T. A. Sorkina, N. A. Kulikova, O. I. Filippova, et al., Ekol. Prom-st' Ross., No. 2, 33 (2010).

    Google Scholar 

  11. E. M. Pena-Mendez, J. Havel, and J. Patocka, J. Appl. Biomed. 3, 13 (2005).

    CAS  Google Scholar 

  12. A. Nuzzo, A. Sanchez, B. Fontaine, et al., J. Geochem. Explor. 129, 1 (2013).

    Article  CAS  Google Scholar 

  13. A. S. Cruz-Zavala, A. M. Pat-Espadas, J. R. Rangel-Mendez, et al., Bioresour. Technol. 207, 39 (2016).

    Article  CAS  Google Scholar 

  14. L. Chekli, S. Phuntsho, M. Roy, et al., Sci. Total Environ. 461, 19 (2013).

    Article  Google Scholar 

  15. A. Yu. Polyakov, T. A. Sorkina, A. E. Goldt, et al., Hyperfine Interact. 219, 113 (2013).

    Article  CAS  Google Scholar 

  16. T. A. Sorkina, A. Yu. Polyakov, N. A. Kulikova, et al., J. Soils Sediments 14, 261 (2014).

    Article  CAS  Google Scholar 

  17. T. Almeelbi and A. Bezbaruah, J. Nanopart. Res. 14 (7), 1 (2012).

    Article  Google Scholar 

  18. Yu. N. Vodyanitskii, Pochvoved., No. 2, 235 (2014).

    Google Scholar 

  19. L. H. Rad, Master Thesis (Norveg. Univ. Life Sci., 2014).

    Google Scholar 

  20. J. Fatisson, S. Ghoshal, and N. Tufenkji, Langmuir 26, 12832 (2010).

    Article  CAS  Google Scholar 

  21. S. S. R. M. D. H. R. Wijesekara, B. F. A. Basnayake, and M. Vithanage, Environ. Sci. Pollut. Res. 21, 7075 (2014).

    Article  CAS  Google Scholar 

  22. A. B. M. Giasuddin, S. R. Kanel, and H. I. Choi, Environ. Sci. Technol. 41, 2022 (2007).

    Article  CAS  Google Scholar 

  23. M. Hofrichter, Biopolymers: Lignin, Humic Substances, and Coal, Ed. by A. Steinbuechel (Wiley-VCH, Weinheim, 2001).

  24. Uniform Methods of Water Analysis, Ed. by Yu. Yu. Lur’e (Khimiya, Moscow, 1973) [in Russian].

  25. A. V. Belova, Practical Guide on Toxicological Chemistry (Meditsina, Moscow, 1967) [in Russian].

    Google Scholar 

  26. R. S. Sokolov, Practical Guide on Chemical Technology (Vlados, Moscow, 2004) [in Russian].

    Google Scholar 

  27. J. Ma, R. D. Vecchio, K. S. Golanoski, et al., Environ. Sci. Technol. 44, 5395 (2010).

    Article  CAS  Google Scholar 

  28. M. H. Gerzabek, F. Pichlmayer, H. Kirchmann, and G. Haberhauer, Eur. J. Soil Sci. 48, 273 (1997).

    Article  Google Scholar 

  29. E. Illes and E. Tombacz, J. Colloid Interface Sci. 295, 115 (2006).

    Article  CAS  Google Scholar 

  30. J. P. Pinheiro, A. M. Mota, J. M. R. d’Oliveira, and J. M. G. Martinho, Anal. Chim. Acta 329, 15 (1996).

    Article  CAS  Google Scholar 

  31. D. M. B. P. Milori, L. Martin-Neto, C. Bayer, et al., Soil Sci. 167, 739 (2002).

    Article  CAS  Google Scholar 

  32. M. Fuentes, M. Olaetxea, R. Baigorri, et al., J. Geochem. Explor. 129, 14 (2013).

    Article  CAS  Google Scholar 

  33. A. Yu. Polyakov, A. E. Goldt, T. A. Sorkina, et al., Cryst. Eng. Commun. 14, 8097 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pankratov.

Additional information

Original Russian Text © D.A. Pankratov, M.M. Anuchina, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 2, pp. 234–240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratov, D.A., Anuchina, M.M. Role of humic substances in the formation of nanosized particles of iron corrosion products. Russ. J. Phys. Chem. 91, 233–239 (2017). https://doi.org/10.1134/S0036024417020224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417020224

Keywords

Navigation