Advertisement

Russian Journal of Physical Chemistry A

, Volume 90, Issue 11, pp 2249–2253 | Cite as

Proton magnetic relaxation study of the thermodynamic characteristics of water adsorbed by cellulose fibers

  • Yu. B. Grunin
  • L. Yu. GruninEmail author
  • D. S. Masas
  • V. I. Talantsev
  • N. N. Sheveleva
Physical Chemistry of Surface Phenomena

Abstract

The possibility of determining the thermodynamic parameters that characterize the sorption properties of cellulose and the state of water associated with its fibers is demonstrated using modern concepts of the structure of this vegetable polymer and methods based on theories of adsorption and NMR relaxation in heterogeneous systems.

Keywords

cellulose–water system adsorption isotherm proton magnetic relaxation times thermodynamic parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
  2. 2.
    E. A. Guggenheim, Application of Statistical Mechanics (Clarendon, Oxford, 1966), p. 186.Google Scholar
  3. 3.
    R. B. Anderson, J. Am. Chem. Soc. 68, 686 (1946).CrossRefGoogle Scholar
  4. 4.
    J. H. de Boer, The Dynamical Character of Adsorption, 2nd ed. (Clarendon, Oxford, 1953), p. 200.Google Scholar
  5. 5.
    I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916).CrossRefGoogle Scholar
  6. 6.
    S. Gregg and K. Sing, Adsorption, Surface Area, and Porosity (Academic, New York, 1982).Google Scholar
  7. 7.
    M. M. Dubinin, Zh. Fiz. Khim. 61, 1301 (1987).Google Scholar
  8. 8.
    Yu. B. Grunin, Doctoral (Chem.) Dissertation (Riga, 1989).Google Scholar
  9. 9.
    L. Yu. Grunin, Yu. B. Grunin, V. I. Talantsev, et al., Polym. Sci., Ser. A 57, 43 (2015).CrossRefGoogle Scholar
  10. 10.
    Yu. B. Grunin, L. Yu. Grunin, V. I. Talantcev, et al., Biophysics 60, 43 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 124 (31), 9074 (2002).CrossRefGoogle Scholar
  12. 12.
    Y. Nishiyama, J. Sugiyama, H. Chanzy, et al., J. Am. Chem. Soc. 125, 14300 (2003).CrossRefGoogle Scholar
  13. 13.
    Y. Nishiyama, G. P. Johnson, A. D. French, et al., Biomacromol. 9, 3133 (2008).CrossRefGoogle Scholar
  14. 14.
    R. M. Brown, J. Polym. Sci., Ser. A: Polym. Chem. 42, 487 (2004).CrossRefGoogle Scholar
  15. 15.
    Y. B. Grunin, L. Y. Grunin, E. A. Nikolskaya, et al., Polym. Sci., Ser. A 54, 201 (2012).CrossRefGoogle Scholar
  16. 16.
    V. P. Nikolaev, A. A. Ageev, and Yu. G. Frolov, Tr. Mosk. Khim.-Tekhn. Inst. Mendeleeva, No. 101, 84 (1978).Google Scholar
  17. 17.
    www.nmr-design.com.Google Scholar
  18. 18.
    Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Moscow, 1975) [in Russian].Google Scholar
  19. 19.
    V. I. Chizhik, Nuclear Magnetic Relaxation (St. Petersburg, 2004) [in Russian].Google Scholar
  20. 20.
    A. Abragam, The Principles of Nuclear Magnetism (Oxford Univ., Oxford, 1961).Google Scholar
  21. 21.
    Yu. B. Grunin, L. Yu. Grunin, and E. A. Nikol’skaya, Russ. J. Phys. Chem. A 81, 1165 (2007).CrossRefGoogle Scholar
  22. 22.
    Ya. I. Gerasimov, Course of Physical Chemistry (Khimiya, Moscow, 1973), Vols. 1, 2 [in Russian].Google Scholar
  23. 23.
    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikolskaya, et al., Russ. J. Phys. Chem. A 87, 100 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. B. Grunin
    • 1
  • L. Yu. Grunin
    • 1
    • 2
    Email author
  • D. S. Masas
    • 1
  • V. I. Talantsev
    • 1
  • N. N. Sheveleva
    • 1
  1. 1.Volga State University of Technology, Yoshkar-OlaMari ElRussia
  2. 2.Mari State University, Yoshkar-OlaMari ElRussia

Personalised recommendations