Skip to main content
Log in

[Ca(BH4)2] n clusters as hydrogen storage material: A DFT study

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Calcium borohydride is widely studied as a hydrogen storage material. However, investigations on calcium borohydride from a cluster perspective are seldom found. The geometric structures and binding energies of [Ca(BH4)2] n (n = 1–4) clusters are determined using density function theory (DFT). For the most stable structures, vibration frequency, natural bond orbital (NBO) are calculated and discussed. The charge transfer from (BH4) to Ca was observed. Meanwhile, we also study the LUMO–HOMO gap (E g) and the B–H bond dissociation energies (BDEs). [Ca(BH4)2]3 owns higher E g, revealing that trimer is more stable than the other forms. Structures don’t change during optimization after hydrogen radical removal, showing that calcium borohydride could possibly be used as a reversible hydrogen storage material. [Ca(BH4)2]4 has the smallest dissociation energy suggesting it releases hydrogen more easily than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Dovgaliuk, V. Ban, Y. Sadikin, et al., J. Phys. Chem. C 118, 145 (2014).

    Article  CAS  Google Scholar 

  2. B. L. Chittari and S. P. Tewari, Phys. Status Solidi B 251, 898 (2014).

    Article  CAS  Google Scholar 

  3. H. Chu, S. Qiu, L. Sun, et al., J. Renew. Sustain. Energy 6, 013105 (2014).

    Article  Google Scholar 

  4. Y. Filinchuk, B. Richter, T. R. Jensen, et al., Angew. Chem. Int. Ed. 50, 11162 (2011).

    Article  CAS  Google Scholar 

  5. W. Grochala and P. P. Edwards, Chem. Rev. 35, 1283 (2004).

    Article  Google Scholar 

  6. E. Hazrati, G. Brocks, and G. A. de Wijs, J. Phys. Chem. C 118, 5102 (2014).

    Article  CAS  Google Scholar 

  7. L. George and S. K. Saxena, Int. J. Hydrogen Energy 35, 5454 (2010).

    Article  CAS  Google Scholar 

  8. P. Zhang, B. Xu, X. Li, et al., Int. J. Hydrogen Energy 39, 17144 (2014).

    Article  CAS  Google Scholar 

  9. E. Rönnebro, Curr. Opin. Solid State M 15, 44 (2011).

  10. M. D. Riktor, M. H. Sørby, K. Chlopek, et al., J. Mater. Chem. 17, 4939 (2007).

    Article  CAS  Google Scholar 

  11. Y. Filinchuk, E. Ronnebro, and D. Chandra, Acta Mater. 57, 732 (2009).

    Article  CAS  Google Scholar 

  12. Purusottam Jena et al., Tech. Report no. 0704-0188 (2014).

    Google Scholar 

  13. D. M. Liu, C. Gao, Z. X. Qian, et al., Int. J. Hydrogen Energy 38, 3291 (2013).

    Article  CAS  Google Scholar 

  14. S. Orimo, Y. Nakamori, J. R. Eliseo, et al., Chem. Rev. 107, 4111 (2007).

    Article  CAS  Google Scholar 

  15. C. Paduani, M. M. Wu, M. Willis, et al., J. Phys. Chem. A 115, 10237 (2011).

    Article  CAS  Google Scholar 

  16. M. Fichtner, J. Engel, O. Fuhr, et al., Inorg. Chem. 42, 7060 (2003).

    Article  CAS  Google Scholar 

  17. R. Mohtadi, P. Sivasubramanian, S. J. Hwang, et al., Int. J. Hydrogen Energy 37, 2388 (2012).

    Article  CAS  Google Scholar 

  18. X. Chen, F. Yuan, Y. Tan, et al., J. Phys. Chem. C 116, 21162 (2012).

    Article  CAS  Google Scholar 

  19. N. Bindzus, F. Cargnoni, B. B. Iversen, et al., J. Phys. Chem. C 117, 2308 (2013).

    Article  CAS  Google Scholar 

  20. L. H. Rude, M. Corno, P. Ugliengo, et al., J. Phys. Chem. C 116, 20239 (2012).

    Article  CAS  Google Scholar 

  21. D. A. Knight, R. Zidan, R. Lascola, et al., J. Phys. Chem. C 117, 19905 (2013).

    Article  CAS  Google Scholar 

  22. H. W. Li, E. Akiba, and S. Orimo, J. Alloys Compd. 580, S292 (2013).

    Article  CAS  Google Scholar 

  23. S. Li, M. Willis, and P. Jena, J. Phys. Chem. C 114, 16849 (2010).

    Article  CAS  Google Scholar 

  24. S. H. Lee, V. R. Manga, and Z. K. Liu, Int. J. Hydrogen Energy 35, 6812 (2010).

    Article  CAS  Google Scholar 

  25. Y. Guo, J. Jia, X. H. Wang, et al., Chem. Phys. 418, 22 (2013).

    Article  CAS  Google Scholar 

  26. D. M. F. Santos and C. A. C. Sequeira, Renew. Sust. Energy Rev. 15, 3980 (2011).

    Article  CAS  Google Scholar 

  27. P. Martelli, R. Caputo, A. Remhof, et al., J. Phys. Chem. C 114, 7173 (2010).

    Article  CAS  Google Scholar 

  28. O. Zavorotynska, M. Corno, A. Damin, et al., J. Phys. Chem. C 115, 18890 (2011).

    Article  CAS  Google Scholar 

  29. D. S. Sholl and K. C. Kim, J. Phys. Chem. C 114, 678 (2009).

    Google Scholar 

  30. Y. Yang, X. Wu, C. Liu, et al., Chem. Phys. 443, 45 (2014).

    Article  CAS  Google Scholar 

  31. J. H. Kim, S. A. Jin, J. H. Shim, et al., Scripta Mater. 58, 481 (2008).

    Article  CAS  Google Scholar 

  32. E. H. Majzoub and E. Rönnebro, J. Phys. Chem. C 113, 3352 (2008).

    Article  Google Scholar 

  33. X. H. Li and X. H Ju, Comput. Theor. Chem. 1025, 46 (2013).

  34. M. Fichtner, K. Chlopek, M. Longhini, et al., J. Phys. Chem. C 112, 11575 (2008).

    Article  CAS  Google Scholar 

  35. T. Noritake, M. Aoki, M. Matsumoto, et al., J. Alloy. Compd. 491, 57 (2010).

    Article  CAS  Google Scholar 

  36. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  37. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).

    Article  CAS  Google Scholar 

  38. S. R. Pruitt, S. S. Leang, P. Xu, et al., Comput. Theor. Chem. 1021, 70 (2013).

    Article  CAS  Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford, CT, USA, 2009).

    Google Scholar 

  40. K. Miwa and M. Aoki, Phys. Rev. B 74, 155122 (2006)

    Article  Google Scholar 

  41. S. F. Parker, Coord. Chem. Rev 254, 215 (2010)

    Article  CAS  Google Scholar 

  42. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 36, 255 (2003).

    Article  CAS  Google Scholar 

  43. C. B. Lingam and S. P. Tewari, Comput. Theor. Chem. 1020, 151 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyun Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Dong, Y., Wang, B. et al. [Ca(BH4)2] n clusters as hydrogen storage material: A DFT study. Russ. J. Phys. Chem. 90, 1997–2005 (2016). https://doi.org/10.1134/S0036024416100071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416100071

Keywords

Navigation