Advertisement

Russian Journal of Physical Chemistry A

, Volume 90, Issue 7, pp 1405–1412 | Cite as

First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2–10)

  • M. AfsharEmail author
  • S. S. Hoseini
  • M. Sargolzaei
Structure of Matter and Quantum Chemistry
  • 35 Downloads

Abstract

In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2–10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO–LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

Keywords

density functional theory cluster magnetic moment stability HOMO–LUMO energy gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Freivogel, J. Fulara, M. Jakobi, et al., J. Chem. Phys. 103, 54 (1995).CrossRefGoogle Scholar
  2. 2.
    C. Barrientos, P. Redondo and A. Largo, Chem. Phys. Lett. 343, 563 (2001).CrossRefGoogle Scholar
  3. 3.
    P. Redondo, C. Barrientos and A. Largo, Chem. Phys. Lett. 335, 64 (2001).CrossRefGoogle Scholar
  4. 4.
    C.-R. Wang, R.-B. Huang, Z.-Y. Liu, et al., Chem. Phys. Lett. 242, 355 (1995).CrossRefGoogle Scholar
  5. 5.
    G. Pascoli and H. Lavendy, Chem. Phys. Lett. 312, 333 (1999).CrossRefGoogle Scholar
  6. 6.
    Y. Ohshima, Y. Endo, and T. Ogata, J. Chem. Phys. 102, 1493 (1995).CrossRefGoogle Scholar
  7. 7.
    N. Moazzen Ahmadi and F. Zerbetto, J. Chem. Phys. 103, 6343 (1995).CrossRefGoogle Scholar
  8. 8.
    G. Pascoli and H. Lavendy, J. Phys. Chem. A 103, 3518 (1999).CrossRefGoogle Scholar
  9. 9.
    G. Pascoli and H. Lavendy, Int. J. Mass Spectrom. 181, 11 (1998).CrossRefGoogle Scholar
  10. 10.
    A. Largo, A. Cimas, P. Redondo, et al., Int. J. Quantum Chem. 84, 127 (2001).CrossRefGoogle Scholar
  11. 11.
    R.-B. Huang, C.-R. Wang, Z.-Y. Liu, et al., Z. Phys. D 33, 49 (1995).CrossRefGoogle Scholar
  12. 12.
    J. Xu, A. Wang, X. Wang, et al., Nano Res. 4, 50 (2011).CrossRefGoogle Scholar
  13. 13.
    P. Thaddeus, S. Cummins, and R. A. Linke, Astrophys. J. Lett. 283, 45 (1984).CrossRefGoogle Scholar
  14. 14.
    J. Cernicharo, C. A. Gottlieb, M. Guélin, et al., Astrophys. J. Lett. 341, 25 (1989).CrossRefGoogle Scholar
  15. 15.
    M. Ohishi, N. Kaifu, K. Kawaguchi, et al., Astrophys. J. Lett. 345, 83 (1989).CrossRefGoogle Scholar
  16. 16.
    P. Mélinon, P. Kéghélian, and A. Perez, et al., Phys. Rev. B 58, 16481 (1998).CrossRefGoogle Scholar
  17. 17.
    M. Leleyter, Z. Phys. D: At. Mol. Clust. 12, 381 (1989).CrossRefGoogle Scholar
  18. 18.
    Z.-Y. Liu, C.-R. Wang, R.-B. Huang, et al., Int. J. Mass Spectrom. Ion Process. 141, 201 (1995).CrossRefGoogle Scholar
  19. 19.
    Z.-Y. Liu, R.-B. Huang, Z.-C. Tang, et al., Chem. Phys. 229, 335 (1998).CrossRefGoogle Scholar
  20. 20.
    C. Barrientos, P. Redondo, and A. Largo, Chem. Phys. Lett. 320, 481 (2000).CrossRefGoogle Scholar
  21. 21.
    P. Redondo, A. Largo, F. García, et al., Int. J. Quantum Chem. 84, 660 (2001).CrossRefGoogle Scholar
  22. 22.
    A. Largo, P. Redondo, and C. Barrientos, J. Phys. Chem. A 106, 4217 (2002).CrossRefGoogle Scholar
  23. 23.
    G. Li and Z. Tang, J. Phys. Chem. A 107, 5317 (2003).CrossRefGoogle Scholar
  24. 24.
    A. Zdetsis, B. Engels, M. Hanrath, et al., Chem. Phys. Lett. 302, 288 (1999).CrossRefGoogle Scholar
  25. 25.
    E. G. Noya and M. Menon, J. Chem. Phys. 119, 3594 (2003).CrossRefGoogle Scholar
  26. 26.
    X. F. Duan, L. W. Burggraf, and L. Huang, Molecules 18, 8591 (2013).CrossRefGoogle Scholar
  27. 27.
    P. Hohenberg, and W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
  28. 28.
    K. Koepernik and H. Eschrig, FPLO-9 code. http://www.FPLOdeGoogle Scholar
  29. 29.
    I. Opahle, PhD thesis (Tech. Univ., Dresden, 2001)Google Scholar
  30. 29a.
    H. Eschrig, M. Richter, and I. Opahle, in Relativistic Electronic Structure Theory, Ch. II: Applications, Ed. by P. Schwerdtfeger (Elsevier, Amsterdam, 2004), p. 723.Google Scholar
  31. 30.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  32. 31.
    M. Afshar, M. Babaei, and A. H. Kordbacheh, J. Theor. Appl. Phys. 7, 59 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Materials Simulation Laboratory, Department of PhysicsIran University of Science and TechnologyNarmak, TehranIran
  2. 2.Department of ChemistryShahrood University of TechnologyShahroodIran

Personalised recommendations