Skip to main content
Log in

Interaction between gaseous ozone and crystalline potassium bromide

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The formation of nonvolatile products of the oxidation of a bromide ion during the interaction between gaseous ozone and powdered crystalline KBr is studied. It is found that potassium bromate KBrO3 is the main product of the reaction. The influence of major experimental factors (the duration of ozonation, the concentration of ozone, the humidity of the initial gas, and the temperature) on the rate of formation of bromate is studied. The effective constants of the formation of bromate during the interaction between O3 and Br in a heterogeneous gas–solid body system and in a homogeneous aqueous solution are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Simpson, S. S. Brown, A. Saiz-Lopez, et al., Chem. Rev. 115, 4035 (2015).

    Article  CAS  Google Scholar 

  2. P. Nissenson, D. M. Packwood, S. W. Hunt, et al., Atmos. Environ. 43, 3951 (2009).

    Article  CAS  Google Scholar 

  3. R. Sander, W. C. Keene, A. A. P. Pszenny, et al., Atmos. Chem. Phys. 3, 1301 (2003).

    Article  CAS  Google Scholar 

  4. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications (Academic, Elsevier, San Diego, 1999).

    Google Scholar 

  5. L. Barrie and U. Platt, Tellus B 49, 450 (1997).

    Article  Google Scholar 

  6. S. Solberg, N. Schmidbauer, A. Semb, et al., J. Atmos. Chem. 23, 301 (1996).

    Article  CAS  Google Scholar 

  7. L. A. Barrie, J. W. Bottenheim, R. C. Schnell, et al., Nature 334 6178, 138 (1988).

    Article  CAS  Google Scholar 

  8. J. W. Bottenheim, J. E. Dibb, R. E. Honrath, and P. B. Shepson, Atmos. Environ. 36, 2467 (2002).

    Article  CAS  Google Scholar 

  9. A. M. Grannas, A. E. Jones, J. Dibb, et al., Atmos. Chem. Phys. 7, 4329 (2007).

    Article  CAS  Google Scholar 

  10. M. Piot and R. von Glasow, Atmos. Chem. Phys. 8, 2437 (2008).

    Article  CAS  Google Scholar 

  11. A. Saiz-Lopez and R. von Glasow, Chem. Soc. Rev. 41, 6448 (2012).

    Article  CAS  Google Scholar 

  12. E. Lehrer, G. Hönninger, and U. Platt, Atmos. Chem. Phys. 4, 2427 (2004).

    Article  CAS  Google Scholar 

  13. F. Muñoz, E. Mvula, S. E. Braslavsky, and C. von Sonntag, J. Chem. Soc., Perkin Trans. 2, No. 7, 1109 (2001).

    Article  Google Scholar 

  14. Q. Liu, L. M. Schurter, C. E. Muller, et al., Inorg. Chem. 40, 4436 (2001).

    Article  CAS  Google Scholar 

  15. U. von Gunten and J. Hoigné, Env. Sci. Technol. 28, 1234 (1994).

    Article  Google Scholar 

  16. W. R. Haag and J. Hoigne, Env. Sci. Technol. 17, 261 (1983).

    Article  CAS  Google Scholar 

  17. K. Haruta and T. Takeyama, J. Phys. Chem. 85, 2383 (1981).

    Article  CAS  Google Scholar 

  18. J. A. Garland, A. W. Elzerman, and S. A. Penkett, J. Geophys. Res. 85 (C12), 7488 (1980).

    Article  CAS  Google Scholar 

  19. H. Taube, J. Am. Chem. Soc. 64, 2468 (1942).

    Article  CAS  Google Scholar 

  20. N. W. Oldridge and J. P. D. Abbatt, J. Phys. Chem. A 115, 2590 (2011).

    Article  CAS  Google Scholar 

  21. I. J. George and C. Anastasio, Atmos. Environ. 41, 543 (2007).

    Article  CAS  Google Scholar 

  22. D. Clifford and D. J. Donaldson, J. Phys. Chem. A 111, 9809 (2007).

    Article  CAS  Google Scholar 

  23. C. Anastasio and M. Mozurkewich, J. Atmos. Chem. 41, 135 (2002).

    Article  CAS  Google Scholar 

  24. S. W. Hunt, M. Roeselová, W. Wang, et al., J. Phys. Chem. A 108, 11559 (2004).

    Article  CAS  Google Scholar 

  25. W. R. Simpson, R. von Glasow, K. Riedel, et al., Atmos. Chem. Phys. 7, 4375 (2007).

    Article  CAS  Google Scholar 

  26. J. Hirokawa, K. Onaka, Y. Kajii, and H. Akimoto, Geophys. Rev. Lett. 25, 2449 (1998).

    Article  CAS  Google Scholar 

  27. K. W. Oum, M. J. Lakin, and B. J. Finlayson-Pitts, Geophys. Rev. Lett. 25, 3923 (1998).

    Article  CAS  Google Scholar 

  28. D. O. de Haan, T. Brauers, K. Oum, et al., Int. Rev. Phys. Chem. 18, 343 (1999).

    Article  CAS  Google Scholar 

  29. A. Alebic-Juretic, T. Cvitas, and L. Klasinc, Environ. Monit. Assess 44, 241 (1997).

    Article  CAS  Google Scholar 

  30. M. Mochida, J. Hirokawa, and H. Akimoto, Geophys. Rev. Lett. 27, 262932 (2000).

    Article  Google Scholar 

  31. H. U. Walter, Z. Phys. Chem., Neue Folge (Frankfurt) 75, 287 (1971).

    Article  CAS  Google Scholar 

  32. G. Schmitz, Int. J. Chem. Kinet. 39, 17 (2007).

    Article  CAS  Google Scholar 

  33. T. X. Wang, M. D. Kelley, J. N. Cooper, et al., Inorg. Chem. 33, 5872 (1994).

    Article  CAS  Google Scholar 

  34. H. H. Eysel, K.-G. Lipponer, C. Oberle, and I. Zahn, Spectrochim. Acta A 48, 219 (1992).

    Article  Google Scholar 

  35. W. Levason, J. S. Ogden, M. D. Spicer, and N. A. Young, J. Chem. Soc., Dalton Trans., No. 1, 349 (1990).

    Article  Google Scholar 

  36. D. J. Gardiner, R. B. Girling, and R. E. Hester, J. Mol. Struct. 13, 105 (1972).

    Article  CAS  Google Scholar 

  37. W. Sterzel and W. D. Schnee, Z. Anorg. Allg. Chem. 383, 231 (1971).

    Article  CAS  Google Scholar 

  38. F. A. Miller, G. L. Carlson, F. F. Bentley, and W. H. Jones, Spectrochim. Acta 16, 135 (1960).

    Article  CAS  Google Scholar 

  39. F. A. Miller and C. H. Wilkins, Anal. Chem. 24, 1253 (1952).

    Article  CAS  Google Scholar 

  40. W. A. Alves and R. B. Faria, Spectrochim. Acta A 58, 1395 (2002).

    Article  Google Scholar 

  41. S. T. Shen, Y. T. Yao, and T.-Y. Wu, Phys. Rev. 51, 235 (1937).

    Article  CAS  Google Scholar 

  42. W. H. Class, E. S. Machlin, and G. T. Murray, Trans. Metall. Soc. AIME 221, 769 (1961).

    CAS  Google Scholar 

  43. M. A. Brown, J. T. Newberg, M. J. Krisch, et al., J. Phys. Chem. C 112, 5520 (2008).

    Article  CAS  Google Scholar 

  44. M. A. Brown, Z. Liu, P. D. Ashby, et al., J. Phys. Chem. C 112, 18287 (2008).

    Article  CAS  Google Scholar 

  45. M. A. Brown, P. D. Ashby, D. F. Ogletree, et al., J. Phys. Chem. C 112, 8110 (2008).

    Article  CAS  Google Scholar 

  46. A. Ya. Rozovskii, Kinetics of Topochemical Reactions (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  47. CRC Handbook of Chemistry and Physics, 90th ed. (CD-ROM Vers. 2010), Ed. by D. R. Lide (CRC, Taylor and Francis, Boca Raton, FL, 2010).

  48. J. S. Nicoson, L. Wang, R. H. Becker, et al., Inorg. Chem. 41, 2975 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Levanov.

Additional information

Original Russian Text © A.V. Levanov, I.B. Maksimov, O.Ya. Isaikina, E.E. Antipenko, V.V. Lunin, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 7, pp. 986–992.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levanov, A.V., Maksimov, I.B., Isaikina, O.Y. et al. Interaction between gaseous ozone and crystalline potassium bromide. Russ. J. Phys. Chem. 90, 1312–1318 (2016). https://doi.org/10.1134/S0036024416070189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416070189

Keywords

Navigation