DFT study on the structural and electronic properties of Pt-doped boron nitride nanotubes


First-principles calculations based on density functional theory were carried out to investigate the structural and electronic properties of Pt substitution-doped boron nitride (BN) nanotubes. The electronic and structural properties were studied for substituted Pt in the boron and the nitrogen sites of the (BN) nanotube. The band gap significantly diminishes to 2.095 eV for Pt doping at the B site while the band gap diminishes to 2.231 eV for Pt doping at the N site. The band density increases in both the valence band and the conduction band after doping. The effects of the hardness and softness group 17 (halogen elements) were calculated by density functional theory (DFT).

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Saha, T. C. Dinadayalane, D. Leszczynska, and J. Leszczynski, Chem. Phys. Lett. 541, 85 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, and A. Nilsson, Nano Lett. 8, 162 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, and Z. Zhu, ACS Nano 5, 1677 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS Nano 4, 2979 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    C. Zhi, Y. Bando, C. Tang, and D. Golberg, Mater. Sci. Eng. R 70, 92 (2010).

    Article  Google Scholar 

  6. 6.

    L. Silva, S. Guerini, V. Lemos, and J. Filho, IEEE Trans. Nanotechnol. 5, 517 (2006).

    Article  Google Scholar 

  7. 7.

    X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994).

    CAS  Article  Google Scholar 

  8. 8.

    S. Sharma, P. Rani, A. S. Verma, and V. K. Jindal, Solid State Commun. 152, 802 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    M. Mirzaei, Monatsh. Chem. 141, 491 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    M. Mirzaei and A. Nouri, J. Mol. Struct. (THEOCHEM) 942, 83 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Znkrzewski, G. A. Montgomery, Jr., R. E. Startmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, et al., Gaussian 03 (Gaussian Inc., Pittsburgh PA, 1998).

    Google Scholar 

  12. 12.

    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    CAS  Article  Google Scholar 

  13. 13.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, J. Phys. Chem. Lett. 1, 2946 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    K. H. He, G. Zheng, G. Chen, M. Wan, and G. F. Ji, Physica B 403, 4213 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    S. Hou, Z. Shen, J. Zhang, X. Zhao, and Z. Xue, Chem. Phys. Lett. 393, 179 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    L. A. Silva, S. C. Guerini, V. Lemos, and J. M. Filho, IEEE Trans. Nanotech. 5, 517 (2006).

    Article  Google Scholar 

  18. 18.

    D. A. Evans, A. G. McGlynn, B. M. Towlson, M. Gunn, D. Jones, T. E. Jenkins, R. Winter, and N. R. Poolton, J. Phys.: Condens. Matter 20, 75228 (2008).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ladan Edjlali.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vessally, E., Dehbandi, B. & Edjlali, L. DFT study on the structural and electronic properties of Pt-doped boron nitride nanotubes. Russ. J. Phys. Chem. 90, 1217–1223 (2016). https://doi.org/10.1134/S0036024416060297

Download citation


  • boron nitride nanotube
  • density functional theory
  • structural properties
  • Pt-doped