Skip to main content
Log in

Hydrothermal synthesis of leucite nanoparticles using anionic surfactant: Structural evaluation and catalytic properties

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Surfactant-assisted synthesis of leucite (KAlSi2O6) nanoparticles was carried out by a hydrothermal method using an anionic surfactant at variable temperatures and surfactant concentrations. The newly synthesized leucite nanoparticles were characterized by FTIR, TGA, XRD, FESEM, and TEM. These nanoparticles have a wide and direct band gap at their smallest particle size (E g = 3.30 eV), showing a significant quantum confinement effect. Samples of leucite were prepared at 180°C with different SDS concentrations 0.006, 0.007, 0.008, 0.009, and 0.01 M and were used to degrade methylene blue under ultraviolet radiations. These samples degraded methylene blue to 18.5, 31.7, 45.81, 31.61, 30.1%, respectively. The most effective catalyst is the one which was synthesized at 200°C and the CMC value of the surfactant (sodium dodecyl sulfate) having the percentage degradation of 49.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Ribbe, Am. Mineral. 64, 402 (1979).

    CAS  Google Scholar 

  2. D. C. Palmer, M. T. Dove, R. M. Ibberson, et al., Am. Mineral. 82, 16 (1997).

    Article  CAS  Google Scholar 

  3. O. Y. Golubeva, N. Y. Ul’yanova, and L. N. Kurilenko, Glass Phys. Chem. 39, 649 (2013).

    Article  CAS  Google Scholar 

  4. T.-S. Sheu, W. J. O’Brien, S. T. Rasmussen, et al., J. Mater. Sci. 29, 125 (1994).

    Article  CAS  Google Scholar 

  5. Y. Zhang, J. Wu, P. Rao, and M. Lv, Mater. Lett. 60, 2819 (2006).

    Article  CAS  Google Scholar 

  6. M. Novotna, A. Kloužkova, J. Maixner, et al., Ceram. Silikaty 49, 252 (2005).

    CAS  Google Scholar 

  7. V. Šatava, A. Kloužkova, D. Ležal, et al., Ceram. Silikaty 46, 37 (2002).

    Google Scholar 

  8. A. Balandis and I. Sinkyavichene, Glass Ceram. 62, 49 (2005).

    Article  CAS  Google Scholar 

  9. Y. Zhang, C. Qu, J. Wu, et al., J. Wuhan Univ. Technol.-Mat. Sci. Ed. 23, 452 (2008).

    Article  CAS  Google Scholar 

  10. Y. Zhang, B. Li, P. Rao, et al., J. Am. Ceram. Soc. 90, 1615 (2007).

    Article  CAS  Google Scholar 

  11. A. Imtiaz, M. A. Farrukh, M. Khaleeq-ur-Rahman, et al., Sci. World J. 2013, 641420 (2013).

    Article  Google Scholar 

  12. R. Adnan, N. A. Razana, I. A. Rahman, et al., J. Chin. Chem. Soc. 57, 222 (2010).

    Article  CAS  Google Scholar 

  13. K. M. A. Saron, M. R. Hashim, and M. A. Farrukh, Superlatt. Microstruct. 64, 88 (2013).

    Article  CAS  Google Scholar 

  14. K. M. A. Saron, M. R. Hashim, and M. A. Farrukh, Appl. Surf. Sci. 258, 5200 (2012).

    Article  CAS  Google Scholar 

  15. E. M. Mkawi, K. Ibrahim, M. K. M. Ali, et al., Appl. Mech. Mater. 343, 85 (2013).

    Article  CAS  Google Scholar 

  16. R. L. Ziolli and W. F. Jardim, Quimica Nova 21, 319 (1998).

    Article  CAS  Google Scholar 

  17. T. N. M. Cervantes, D. A. M. Zaia, and H. de Santana, Quimica Nova 32, 2423 (2009).

    Article  CAS  Google Scholar 

  18. J. P. Tardivo, A. del Giglio, C. S. de Oliveira, et al., Photodiagn. Photodyn. Ther. 2, 175 (2005).

    Article  CAS  Google Scholar 

  19. H. Yao, N. Li, S. Xu, et al., Biosens. Bioelectron. 21, 372 (2005).

    Article  CAS  Google Scholar 

  20. M. Arvand, S. Sohrabnezhad, M. F. Mousavi, et al., Anal. Chim. Acta 491, 193 (2003).

    Article  CAS  Google Scholar 

  21. K. P. Singh, D. Mohan, S. Sinha, et al., Ind. Eng. Chem. Res. 42, 1965 (2003).

    Article  CAS  Google Scholar 

  22. P. Nigam, G. Armour, I. M. Banat, et al., Biores. Technol. 72, 219 (2000).

    Article  CAS  Google Scholar 

  23. A. S. Özcan and A. Özcan, J. Colloid Interface Sci. 276, 39 (2004).

    Article  Google Scholar 

  24. A. Gürses, S. Karaca, Ç. Doğar, et al., J. Colloid Interface Sci. 269, 310 (2004).

    Article  Google Scholar 

  25. G. Anderson and C. W. Burnham, Am. J. Sci. 283, 283 (1983).

    Google Scholar 

  26. A. Gaber, A. Y. Abdel-Latief, M. A. Abdel-Rahim, et al., Mater. Sci. Semicon. Proc. 16, 1784 (2013).

    Article  CAS  Google Scholar 

  27. A. Thottoli and A. Unni, J. Nanostruct. Chem. 3, 1 (2013).

    Google Scholar 

  28. E. M. Mkawi, K. Ibrahim, M. K. M. Ali, et al., J. Mater. Sci.: Mater. Electron. 25, 857 (2014).

    CAS  Google Scholar 

  29. Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).

    Article  CAS  Google Scholar 

  30. K. Kabra, R. Chaudhary, and R. L. Sawhney, Ind. Eng. Chem. Res. 43, 7683 (2004).

    Article  CAS  Google Scholar 

  31. G. Huey-Shya, R. Adnan, and M. A. Farrukh, Turk. J. Chem. 35, 375 (2011).

    Google Scholar 

  32. M. Shahid, M. A. Farrukh, A. A. Umar, et al., Russ. J. Phys. Chem. A 88, 842 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrukh, M.A., Naseem, F., Imtiaz, A. et al. Hydrothermal synthesis of leucite nanoparticles using anionic surfactant: Structural evaluation and catalytic properties. Russ. J. Phys. Chem. 90, 1231–1237 (2016). https://doi.org/10.1134/S0036024416060145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416060145

Keywords

Navigation