Skip to main content
Log in

Entropic nature of the adsorption of sodium dodecylbenzenesulfonate on nanoparticles of aluminum and iron oxides in aqueous medium

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The adsorption of anionic surfactant sodium dodecylbenzenesulfonate (SDBS) from aqueous solution on the hydrophilic surfaces of aluminum oxide and iron oxide nanoparticles is studied via UV spectrophotometry, electrophoretic light scattering, and isothermal microcalorimetry. It is shown that the isotherms of the adsorption of SDBS on the surfaces of both oxides in the area of concentrations up to 0.6 mmol/L is linear. It is found that the positive zeta potential of the surfaces of the particles falls to zero and shifts toward the range of negative values due to adsorption. The adsorption of SDBS is characterized by positive enthalpy values over the investigated range of concentrations, while the loss of energy during adsorption indicates it is of an entropic nature. It is concluded that the probable cause of the increase in entropy is the dehydration of SDBS molecules during on surface adsorption. The obtained results are discussed in terms of the formation of hemimicelles of surfactant on the hydrophilic surfaces of metal oxide nanoparticles in an aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gao, H. Gu, and B. Xu, Acc. Chem. Res. 42, 1097 (2009).

    Article  CAS  Google Scholar 

  2. D. Zhu, X. Li, N. Wang, et al., Curr. Appl. Phys. 9, 131 (2009).

    Article  Google Scholar 

  3. S. Abdeen and P. K. Praseetha, Nanomed. Biother. Disc. 2, 165 (2013).

    Google Scholar 

  4. H. B. Nair, B. Sung, V. R. Yadav, et al., Biochem. Pharmacol. 80, 1833 (2010).

    Article  CAS  Google Scholar 

  5. S. Laurent and M. Mahmoudi, Int. J. Mol. Epidemiol. Genet. 2, 367 (2011).

    CAS  Google Scholar 

  6. Y. Wang, Y. Zheng, L. Zhang, et al., J. Control. Release 172, 1126 (2013).

    Article  CAS  Google Scholar 

  7. A. A. Keller, H. Wang, D. Zhou, et al., Environ. Sci. Technol. 44, 1962 (2010).

    Article  CAS  Google Scholar 

  8. A. P. Safronov, E. G. Kalinina, T. A. Smirnova, D. V. Leiman, and A. V. Bagazeev, Russ. J. Phys. Chem. A 84, 2122 (2010).

    Article  CAS  Google Scholar 

  9. X. Li, D. Zhu, and X. Wang, J. Colloid Interface Sci. 310, 456 (2007).

    Article  CAS  Google Scholar 

  10. S. Paria and K. C. Khilar, Adv. Colloid Interface Sci. 110, 75 (2004).

    Article  CAS  Google Scholar 

  11. R. Zhang and P. Somasundaran, Adv. Colloid Interface Sci. 123–126, 213 (2006).

    Article  Google Scholar 

  12. T. D. Pham, M. Kobayashi, and Y. Adachi, Colloid Polym. Sci. 293, 217 (2014).

    Article  Google Scholar 

  13. D. Zhu, X. Li, N. Wang, et al., Curr. Appl. Phys. 9, 131 (2009).

    Article  Google Scholar 

  14. H. Lee, S. Yamaoka, N. Murayama, et al., Mater. Lett. 61, 3974 (2007).

    Article  CAS  Google Scholar 

  15. H. M. Vale and T. F. McKenna, Colloids Surf. A: Physicochem. Eng. Asp. 268, 68 (2005).

    Article  CAS  Google Scholar 

  16. A. M. Gaudin and D. W. Fuerstenau, Trans. AIME 202, 958 (1955).

    Google Scholar 

  17. S. S. Voyutskii, Course of Colloid Chemistry (Khimiya, Moscow, 1976) [in Russian].

    Google Scholar 

  18. Yu. A. Kotov, I. V. Beketov, A. I. Medvedev, and O. R. Timoshenkova, Nanotechnol. Russ. 4, 354 (2009).

    Article  Google Scholar 

  19. Yu. G. Frolov, A Course of Colloid Chemistry. Surface Phenomena and Dispersed Systems (Al’yans, Moscow, 2004) [in Russian].

    Google Scholar 

  20. T. Tadros, Encyclopedia of Colloid and Interface Science (Springer, Berlin, 2013).

    Book  Google Scholar 

  21. Yu. A. Pentin and L. V. Vilkov, Physical Methods in Chemistry (Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  22. E. Calvet and H. Prat, Recent Progress in Microcalorimetry (Elsevier, Amsterdam, 1963).

    Google Scholar 

  23. J. Geng, F. G. Johnson, E. H. Wheatley, et al., Cent. Eur. J. Chem. 12, 307 (2013).

    Article  Google Scholar 

  24. K. Holmberg, B. Jonsson, B. Kronberg, and B. Lindman, Surfactans and Polymers in Aqueous Solution (Wiley-VCH, New York, 2002; BINOM, Labor. Znanii, Moscow, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Mansurov.

Additional information

Original Russian Text © R.R. Mansurov, A.P. Safronov, N.V. Lakiza, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 6, pp. 890–895.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansurov, R.R., Safronov, A.P. & Lakiza, N.V. Entropic nature of the adsorption of sodium dodecylbenzenesulfonate on nanoparticles of aluminum and iron oxides in aqueous medium. Russ. J. Phys. Chem. 90, 1200–1205 (2016). https://doi.org/10.1134/S0036024416060121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416060121

Keywords

Navigation