Skip to main content
Log in

Effect of pressure on the structure and dynamics of hydrogen bonds in ethylene glycol–water mixtures: Numerical simulation data

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Water−ethylene glycol mixtures containing from 0.002 to 0.998 mole fractions of ethylene glycol at T = 298.15 K and P = 0.1 and 100 MPa are simulated by means of classical molecular dynamics. Such structural and dynamic characteristics of hydrogen bonds as the average number and lifetime, along with the distribution of molecules over the number of hydrogen bonds, are calculated; their changes are analyzed, depending on the mixture’s composition and pressure. It is shown that the components are characterized by a high degree of interpenetration and form a uniform infinite hydrogen-bonded cluster over the range of concentrations. It is found that the higher the concentration of ethylene glycol, the greater the stability of all hydrogen bonds. It is concluded that an increase in pressure lowers the number of hydrogen bonds, while the average lifetime of the remaining hydrogen bonds grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Kumbharkhane, S. M. Puranik, and S. C. Mehrotra, J. Solution Chem. 21, 201 (1992).

    Article  CAS  Google Scholar 

  2. F. Corradini, L. Marcheselli, L. Tassi, and G. Tosi, J. Chem. Soc. Faraday Trans. 9, 123 (1993).

    Article  Google Scholar 

  3. P. A. Zagrebin, R. Buchner, R. R. Nazmutdinov, and G. A. Tsirlina, J. Phys. Chem. B 114, 311 (2010).

    Article  CAS  Google Scholar 

  4. S. Harada, T. Nakajima, T. Komatsu, and T. Nakagawa, J. Solution Chem. 7, 463 (1978).

    Article  CAS  Google Scholar 

  5. J.-Y. Huot, E. Battistel, R. Lumry, et al., J. Solution Chem. 17, 601 (1998).

    Article  Google Scholar 

  6. N. Tsierkezos and I. E. Molinou, J. Chem. Eng. Data 43, 989 (1998).

    Article  CAS  Google Scholar 

  7. Z. Nan, B. Liu, and Z. Tan, J. Chem. Thermodyn. 34, 915 (2002).

    Article  CAS  Google Scholar 

  8. T. Sun and A. S. Teja, J. Chem. Eng. Data 48, 198 (2003).

    Article  CAS  Google Scholar 

  9. C. Yang, P. Ma, F. Jing, and D. Tang, J. Chem. Eng. Data 48, 836 (2003).

    Article  CAS  Google Scholar 

  10. M. Matsugami, T. Takamuku, T. Otomo, and T. Yamaguchi, J. Phys. Chem. B 110, 12372 (2006).

    Article  CAS  Google Scholar 

  11. T. Takamuku, Y. Tsutsumi, M. Matsugami, and T. Yamaguchi, J. Phys. Chem. B 112, 13300 (2008).

    Article  CAS  Google Scholar 

  12. J. M. Bernal-Garcia, A. Guzman-Lopez, A. Cabrales- Torres, et al., J. Chem. Eng. Data 53, 1028 (2008).

    Article  CAS  Google Scholar 

  13. W. Afzal, A. H. Mohammadi, and D. Richon, J. Chem. Eng. Data 54, 1254 (2009).

    Article  CAS  Google Scholar 

  14. G. I. Egorov, D. M. Makarov, and A. M. Kolker, Fluid Phase Equilib. 344, 125 (2013).

    Article  CAS  Google Scholar 

  15. G. I. Egorov, D. M. Makarov, and A. M. Kolker, Fluid Phase Equilib. 354, 133 (2013).

    Article  CAS  Google Scholar 

  16. R. S. Taylor and B. C. Garrett, J. Phys. Chem. B 103, 844 (1999).

    Article  CAS  Google Scholar 

  17. A. V. Gubskaya and P. G. Kusalik, J. Phys. Chem. A 108, 7165 (2004).

    Article  CAS  Google Scholar 

  18. O. V. de Oliveira and L. C. G. Freitas, J. Mol. Struct.: THEOCHEM 728, 179 (2005).

    Article  Google Scholar 

  19. D. P. Geerke and W. F. van Gunsteren, Mol. Phys. 105, 1861 (2007).

    Article  CAS  Google Scholar 

  20. B. Szefczyk and M. N. D. S. Cordeiro, J. Phys. Chem. B 115, 3013 (2011).

    Article  CAS  Google Scholar 

  21. R. M. Kumar, P. Baskar, K. Balamurugan, et al., J. Phys. Chem. A 116, 4239 (2012).

    Article  CAS  Google Scholar 

  22. L. Weng, C. Chen, J. Zuo, and W. Li, J. Phys. Chem. A 115, 4729 (2011).

    Article  CAS  Google Scholar 

  23. N. Zhang, W. Li, C. Chen, et al., Mol. Phys. 111, 939 (2013).

    Article  CAS  Google Scholar 

  24. E. Apol, R. Apostolov, and H. J. C. Berendsen, GROMACS 4.5.4. wwwgromacsorg

  25. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  CAS  Google Scholar 

  26. W. D. Cornell, P. Cieplak, C. I. Bayly, et al., J. Am. Chem. Soc. 117, 5179 (1995).

    Article  CAS  Google Scholar 

  27. S. Nose, Mol. Phys. 52, 255 (1984).

    Article  CAS  Google Scholar 

  28. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  Google Scholar 

  29. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  30. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  31. U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).

    Article  CAS  Google Scholar 

  32. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).

    Article  CAS  Google Scholar 

  33. R. Sarma and S. Paul, Chem. Phys. 407, 115 (2012).

    Article  CAS  Google Scholar 

  34. I. M. Ginzburg, L. F. Strelkova, and T. N. Rogozina, Zh. Obshch. Khim. 58, 1116 (1988).

    CAS  Google Scholar 

  35. N. V. Arkhipenko and S. M. Kiiko, Russ. J. Phys. Chem. A 79, 305 (2005).

    CAS  Google Scholar 

  36. Yu. Ya. Kharitonov, E. G. Khoshabova, M. N. Rodnikova, et al., Dokl. Akad. Nauk 304, 917 (1989).

    CAS  Google Scholar 

  37. M. N. Rodnikova, N. A. Chumaevskii, V. M. Troitskii, and D. B. Kayumova, Russ. J. Phys. Chem. A 80, 826 (2006).

    Article  CAS  Google Scholar 

  38. D. C. Rapaport, Mol. Phys. 50, 1151 (1983).

    Article  CAS  Google Scholar 

  39. V. P. Voloshin and Yu. I. Naberukhin, J. Struct. Chem. 50, 78 (2009).

    Article  CAS  Google Scholar 

  40. S. Saito and I. Ohmine, J. Chem. Phys. 102, 3566 (1995).

    Article  CAS  Google Scholar 

  41. R. Gupta and A. Chandra, J. Chem. Phys. 128, 184506 (2008).

    Article  Google Scholar 

  42. M. L. Antipova and V. E. Petrenko, Russ. J. Phys. Chem. A 87, 1170 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Petrenko.

Additional information

Original Russian Text © M.L. Antipova, D.L. Gurina, D.M. Makarov, G.I. Egorov, V.E. Petrenko, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 3, pp. 355–361.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipova, M.L., Gurina, D.L., Makarov, D.M. et al. Effect of pressure on the structure and dynamics of hydrogen bonds in ethylene glycol–water mixtures: Numerical simulation data. Russ. J. Phys. Chem. 90, 560–566 (2016). https://doi.org/10.1134/S003602441603002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441603002X

Keywords

Navigation