Skip to main content
Log in

Constants of acid‒base equilibria in an aqueous amikacin aminoglycoside solution at 298 K

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The acid dissociation constants of form pK 1 = 7.34 ± 0.01, pK 2 = 7.84 ± 0.01, pK 3 = 8.77 ± 0.01, pK 4 = 9.49 ± 0.01, and pK 5 = 10.70 ± 0.02 of cationic amikacin are determined by pH-metric titration at 25°C against the background of 0.1 mol/L KNO3. K 1, K 2, K 3, and K 4 correspond to the dissociation of protons coordinated to amino groups, while K 5 characterizes the dissociation of the hydroxyl hydrogen atom, testifying to the amphoteric character of amikacin molecules. Applying density functional theory (DFT) with the B3LYP hybrid functional and the 6-311G**++ basis set, the partial charges on the atoms of an amikacin molecule are calculated. It is concluded that the dissociation of H(55)hydrogen atom occurs with a greatest partial charge of +0.53631.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Kozlov and L. S. Strachunskii, Modern Antimicrobial Chemotherapy (Med. Inform. Agentstvo, Moscow, 2009) [in Russian].

    Google Scholar 

  2. J. L. Houghton, K. D. Green, W. Chen, and S. Garneau-Tsodikova, Chem Bio Chem 11, 880 (2010).

    Article  CAS  Google Scholar 

  3. P. Dozzo and H. E. Mozer, Expert Opin. Ther. Patents 20, 1321 (2010).

    Article  CAS  Google Scholar 

  4. M. D. Mashkovskii, Medicines, 16th ed. (Novaya Volna, Moscow, 2012) [in Russian].

    Google Scholar 

  5. A. Krezel, W. Szczepanic, M. Swiatek, and M. Jezowska-Bojczuk, Bioorg. Med. Chem. 12, 4075 (2004).

    Article  CAS  Google Scholar 

  6. E. Gaggelli, N. Gaggelli, A. Maccotta, et al., Spectrochim. Acta, Part A 51, 1959 (1995).

    Article  Google Scholar 

  7. J. Cox and E. H. Serpersu, Biochemistry 36, 2353 (1997).

    Article  CAS  Google Scholar 

  8. R. S. Kane, P. T. Glink, R. G. Chapman, et al., Anal. Chem. 73, 4028 (2001).

    Article  CAS  Google Scholar 

  9. wwwzipgomelby/i160

  10. wwwhyperquadcouk/HQ2013htm

  11. A. D. Bochevarov, E. Harder, T. F. Hughes, et al., Int. J. Quantum Chem. 113, 2110 (2013).

    Article  CAS  Google Scholar 

  12. wwwschrodingercom/products/

  13. http://openmopacnet/MOPAC2012html

  14. R. F. Jameson and M. F. Wilson, J. Chem. Soc., Dalton Trans., No. 23, 2607 (1972).

    Article  Google Scholar 

  15. P. M. Sabale, P. Kaur, Y. Patel, et al., J. Chem. Pharm. Res. 4, 4921 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Alekseev.

Additional information

Original Russian Text © V.G. Alekseev, E.V. Markova, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 3, pp. 380–385.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V.G., Markova, E.V. Constants of acid‒base equilibria in an aqueous amikacin aminoglycoside solution at 298 K. Russ. J. Phys. Chem. 90, 586–591 (2016). https://doi.org/10.1134/S0036024416020035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416020035

Keywords

Navigation