Skip to main content

Synthesis of large uniform gold and core–shell gold–silver nanoparticles: Effect of temperature control

Abstract

The temperatures of nucleation and growth for gold and silver nanoparticles are quite close to each other in citrate-based seeded-growth synthesis. Hence, thorough temperature control during the synthesis of gold and gold–silver core–shell nanoparticles is expected to improve the yield of uniform non-aggregated nanoparticles suitable for selective contrasting of surface defects. Gold and gold–silver core–shell nanoparticles of size ranging from 20 to 160 nm were synthesized using various means of temperature control. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and UV–Vis spectroscopy. Model nanocracks were milled on pipeline steel specimen by focused ion beam (FIB). It was found that to produce large uniform core–shell nanoparticles, thorough temperature control is required during formation of the gold seeds and the silver shell. Moreover, the synthesized nanoparticles were used for selective contrasting of defects on metal surface.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Zhang, F. Ren, W. Wu, et al., J. Colloid Interface Sci. 427, 29 (2014).

    Article  CAS  Google Scholar 

  2. 2.

    C. M. Alexander and J. Goodisman, J. Colloid Interface Sci. 418, 103 (2014).

    Article  CAS  Google Scholar 

  3. 3.

    D. Wang, J. Ye, S. D. Hudson, et al., J. Colloid Interface Sci. 417, 244 (2014).

    Article  CAS  Google Scholar 

  4. 4.

    A. Gebregeorgis, C. Bhan, O. Wilson, et al., J. Colloid Interface Sci. 389, 31 (2013).

    Article  CAS  Google Scholar 

  5. 5.

    M. Harada, C. Kawasaki, K. Saijo, et al., J. Colloid Interface Sci. 343, 537 (2010).

    Article  CAS  Google Scholar 

  6. 6.

    G. Frens, Nature 241, 20 (1973).

    CAS  Google Scholar 

  7. 7.

    J. Kimling, M. Maier, B. Okenve, et al., J. Phys. Chem. B 110, 15700 (2006).

    Article  CAS  Google Scholar 

  8. 8.

    C. Gao, J. Vuong, Q. Zhang, et al., Nanoscale 4, 2875 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    J. Rodriguez-Fernandez, J. Perez-Juste, F. J. Garcia de Abajo, et al., Langmuir 22, 7007 (2006).

    Article  CAS  Google Scholar 

  10. 10.

    C. Li, K. L. Shuford, M. Chen, et al., ACS Nano 2, 1760 (2008).

    Article  CAS  Google Scholar 

  11. 11.

    J. M. Slocik, M. O. Stone, and R. R. Naik, Small 1, 1048 (2005).

    Article  CAS  Google Scholar 

  12. 12.

    Z. Wang, B. Tan, I. Hussain, et al., Langmuir 23, 885 (2007).

    Article  CAS  Google Scholar 

  13. 13.

    G. N.Schmid, R. Pfeil, R. Boese, et al., Chem. Ber. 114, 3634 (1981).

    Article  Google Scholar 

  14. 14.

    J. F. Parker, C. A. Fields-Zinna, and R. W. Murray, Acc. Chem. Res. 43, 1289 (2010).

    Article  CAS  Google Scholar 

  15. 15.

    N. R. Jana, L. Gearheart, and C. J. Murphy, Langmuir 17, 6782 (2001).

    Article  CAS  Google Scholar 

  16. 16.

    C. Ziegler, A. Eychmuller, J. Phys. Chem. C 115, 4502 (2011).

    Article  CAS  Google Scholar 

  17. 17.

    N. G. Bastus, J. Comenge, and V. Puntes, Langmuir 27, 11098 (2011).

    Article  CAS  Google Scholar 

  18. 18.

    M. Eguchi, D. Mitsui, H. L. Wu, et al., Langmuir 28, 9021 (2012).

    Article  CAS  Google Scholar 

  19. 19.

    X. Liu, H. Xu, H. Xia, et al., Langmuir 28, 13720 (2012).

    Article  CAS  Google Scholar 

  20. 20.

    R. A. Sperling, P. R. Gil, F. Zhang, et al., Chem. Soc. Rev. 37, 1896 (2008).

    Article  CAS  Google Scholar 

  21. 21.

    V. K. Pustovalov and W. Fritzsche, Plasmonics 8, 983 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    R. A. Alvarez-Puebla and L. M. Liz-Marzan, Small 6, 604 (2010).

    Article  CAS  Google Scholar 

  23. 23.

    S. D. Perrault, C. Walkey, T. Jennings, et al., Nano Lett. 9, 1909 (2009).

    Article  CAS  Google Scholar 

  24. 24.

    P. Zhao, N. Li, and D. Astruc, Coord. Chem. Rev. 257, 638 (2013).

    Article  CAS  Google Scholar 

  25. 25.

    H. Liang, W. Wang, Y. Huang, et al., J. Phys. Chem. C 114, 7427 (2010).

    Article  CAS  Google Scholar 

  26. 26.

    Q. Zhang, W. Li, C. Moran, et al., J. Am. Chem. Soc. 132, 11372 (2010).

    Article  CAS  Google Scholar 

  27. 27.

    H. Li, H. Xia, W. Ding, et al., Langmuir 30, 2498 (2014).

    Article  CAS  Google Scholar 

  28. 28.

    R. N. Cassar, D. Graham, I. Larmour, et al., Vibrat. Spectrosc. 71, 41 (2014).

    Article  CAS  Google Scholar 

  29. 29.

    N. G. Bastus, F. Merkoci, J. Piella, et al., Chem. Mater. 26, 2836 (2014).

    Article  CAS  Google Scholar 

  30. 30.

    Y. Cao, R. Zheng, X. Ji, et al., Langmuir 30, 3876 (2014).

    Article  CAS  Google Scholar 

  31. 31.

    L. Lu, G. Burkey, I. Halaciuga, et al., J. Colloid Interface Sci. 392, 90 (2013).

    Article  CAS  Google Scholar 

  32. 32.

    F. S. Ameer, Y. Zhou, S. Zou, et al., J. Phys. Chem. C 118, 22234 (2014).

    Article  CAS  Google Scholar 

  33. 33.

    B. Rodriguez-Gonzalez, A. Burrows, M. Watanabe, et al., J. Mater. Chem. 15, 1755 (2005).

    Article  CAS  Google Scholar 

  34. 34.

    L. Lu, H. Wang, Y. Zhou, et al., Chem. Commun. 2002, 144 (2002).

    Article  Google Scholar 

  35. 35.

    Y. Yang, J. Shi, G. Kawamura, et al., Scr. Mater. 58, 862 (2008).

    Article  CAS  Google Scholar 

  36. 36.

    C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nature Methods 9, 671 (2012).

    Article  CAS  Google Scholar 

  37. 37.

    P. Cabilio and J. Masaro, Can. J. Stat. 24, 349 (1996).

    Article  Google Scholar 

  38. 38.

    Y. Bjornstahl, Philos. Mag. 42, 352 (1921).

    Article  CAS  Google Scholar 

  39. 39.

    J. Turkevich, P. C. Stevenson, and J. Hillier, Faraday Discuss. 11, 55 (1951).

    Article  Google Scholar 

  40. 40.

    L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, et al., Langmuir 16, 9722 (2000).

    Article  CAS  Google Scholar 

  41. 41.

    S. Lee, S. S. Choi, S. A. Li, et al., J. Heat Transf. 121, 280 (1999).

    Article  CAS  Google Scholar 

  42. 42.

    A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, et al., Langmuir 29, 15076 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Gorbachevskyy.

Additional information

Published in Russian in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 1, pp. 105–110.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiunov, I.A., Gorbachevskyy, M.V., Kopitsyn, D.S. et al. Synthesis of large uniform gold and core–shell gold–silver nanoparticles: Effect of temperature control. Russ. J. Phys. Chem. 90, 152–157 (2016). https://doi.org/10.1134/S0036024416010301

Download citation

Keywords

  • gold–silver core–shell nanoparticles
  • seed-growth method
  • temperature control