Skip to main content
Log in

Radioactive decay as a forced nuclear chemical process: Phenomenology

  • Commemorating the Journal’s 85th Anniversary
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Concepts regarding the mechanism of radioactive decay of nuclei are developed on the basis of a hypothesis that there is a dynamic relationship between the electronic and nuclear subsystems of an atom, and that fluctuating initiating effects of the electronic subsystem on a nucleus are possible. Such relationship is reflected in experimental findings that show the radioactive decay of nuclei might be determined by a positive difference between the mass of an initial nucleus and the mass of an atom’s electronic subsystem, i.e., the mass of the entire atom (rather than that of its nucleus) and the total mass of the decay products. It is established that an intermediate nucleus whose charge is lower by unity than the charge of the initial radioactive nucleus is formed as a result of the above fluctuating stimuli that initiate radioactive decay, and its nuclear matter is thus in an unbalanced metastable state of inner shakeup, affecting the quark subsystem of nucleons. The intermediate nucleus thus experiences radioactive decay with the emission of α or β particles. At the same time, the high energy (with respect to the chemical scale) of electrons in plasma served as a factor initiating the processes in different nuclear chemical transformations and radioactive decays in low-temperature plasma studied earlier, particularly during the laser ablation of metals in aqueous solutions of different compositions and in near-surface cathode layers upon glow discharge. It is shown that a wide variety of nucleosynthesis processes in the Universe can be understood on the same basis, and a great many questions regarding the formation of light elements in the solar atmosphere and some heavy elements (particularly p-nuclei) in the interiors of massive stars at late stages of their evolution can also be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Soddy, The Story of Atomic Energy (Nova Atlantis, London, 1949; Atomizdat, Moscow, 1979), p. 288.

    Google Scholar 

  2. A. S. Davydov, Theory of Atomic Nucleus (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  3. G. L. Wendt and C. E. Irion, J. Am. Chem. Soc. 44, 1887 (1922).

    Article  CAS  Google Scholar 

  4. E. Rutherford, Nature (London) 109, 418 (1922).

    Article  CAS  Google Scholar 

  5. G. L. Wendt, Science, New Series 55 (1430), 567 (1922).

    CAS  Google Scholar 

  6. G. V. Efimov, Quantum Mechanics (Selected Chapters) (Ucheb.-Nauch. Tsentr OIYaI, Dubna, 2012) [in Russian].

    Google Scholar 

  7. J. Dash, I. Savvatimova, S. Frantz, E. Weis, and H. Kozima, in Proceedings of the American Nuclear Society Conference, June 6, 2003, San Diego, p. 1.

  8. I. B. Savvatimova, Ya. Kucherov, and A. B. Karabut, Trans. Fusion Technol. 26 (4T), 389 (1994).

    Google Scholar 

  9. I. Savvatimova, Condens. Matter Nucl. Sci. 8, 1 (2011).

    Google Scholar 

  10. I. Savvatimova, in Proceedings of the 13th International Conference ICCF13, Sochy, Russia, 2007, p. 505.

  11. I. Savvatimova, G. Savvatimov, and A. Kornilova, in Proceedings of the 13th International Conference ICCF13, Sochy, Russia, 2007, p. 295.

  12. A. G. Volkovich, A. P. Govorun, A. A. Gulyaev, et al., Kratk. Soobshch. Fiz. FIAN, No. 8, 45 (2002).

    Google Scholar 

  13. L. I. Urutskoev, D. V. Filippov, A. A. Rukhadze, et al., Z. Naturforsch. 65a, 573 (2010).

    Google Scholar 

  14. L. I. Urutskoev, D. V. Filippov, A. A. Rukhadze, et al., Prikl. Fiz., No. 4, 60 (2012).

    Google Scholar 

  15. A. V. Simakin and G. A. Shafeev, Phys. Wave Phenom. 16, 268 (2008).

    Article  Google Scholar 

  16. E. V. Barmina, I. A. Sukhov, N. M. Lepekhin, et al., Quantum Electron. 43, 591 (2013).

    Article  Google Scholar 

  17. A. V. Simakin and G. A. Shafeev, arXiv:0911.549.

  18. E. V. Barmina, P. G. Kuzmin, S. F. Timashev, and G. A. Shafeev, arXiv: 1306.0830 [physics.gen-ph].

  19. E. V. Barmina, A. V. Simakin, and G. A. Shafeev, Quantum Electron. 44, 791 (2014).

    Article  Google Scholar 

  20. S. F. Timashev, arXiv:1107.1799v7.

  21. S. Timashev, Int. J. Astrophys. Space Sci. 2 (6), 88 (2014). http://www.sciencepublishinggroup.com/journal/ paperinfo.aspx?journalid=302&doi=10.11648/ j.ijass.20140206.1.

    Article  Google Scholar 

  22. S. F. Timashev, A. V. Simakin, and G. A. Shafeev, Russ. J. Phys. Chem. A 88, 1980 (2014).

    Article  CAS  Google Scholar 

  23. I. B. Savvatimova and S. F. Timashev, J. Condens. Matter Nucl. Sci. (in press).

  24. T. H. Boyer, Phys. Rev. 174, 1764 (1968).

    Article  Google Scholar 

  25. K. A. Milton, L. L. DeRaad, J. Schwinger, Ann. Phys. (N.Y.) 115, 388 (1978).

    Article  Google Scholar 

  26. R. Balian and B. Duplantier, Ann. Phys. (N.Y.) 112, 165 (1978).

    Article  Google Scholar 

  27. S. Timashev, Int. J. Astrophys. Space Sci. 2 (2), 22 (2014). http://www.sciencepublishinggroup.com/journal/ paperinfo.aspx?journalid=302&doi=10.11648/ j.ijass.20140202.1.

    Article  Google Scholar 

  28. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  29. S. F. Timashev, Yu. S. Polyakov, P. I. Misurkin, and S. G. Lakeev, Phys. Rev. E 81, 041128 (2010); arXiv:1004.0235.

    Article  Google Scholar 

  30. M. Jung, F. Bosch, K. Beckert, et al., Phys. Rev. Lett. 69, 2164 (1992).

    Article  CAS  Google Scholar 

  31. F. Bosch, T. Faestermann, J. Friese, et al., Phys. Rev. Lett. 77, 5190 (1996).

    Article  CAS  Google Scholar 

  32. V. M. Sharapov and S. L. Kanashenko, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 20 (2008).

    Google Scholar 

  33. D. V. Aleksandrov, A. F. Belyatskii, Yu. A. Glukhov, et al., JETP Lett. 40, 909 (1984).

    Google Scholar 

  34. H. J. Rose and G. A. Jones, Nature 307, 245 (1984).

    Article  CAS  Google Scholar 

  35. E. M. Baum, H. D. Knox, and T. R. Miller, Nuclides and Isotopes: Chart of the Nuclides, 16th ed. (Knolls Atomic Power Laboratory, 2002).

    Google Scholar 

  36. S. G. Kadmenskii, S. D. Kurgalin, and Yu. M. Tchuvil’sky, Phys. Part. Nucl. 38, 699 (2007).

    Article  Google Scholar 

  37. N. N. Tunitskii, V. A. Kaminskii, and S. F. Timashev, Methods of Physicochemical Kinetics (Khimiya, Moscow, 1972) [in Russian].

    Google Scholar 

  38. Ya. M. Kramarovskii and V. P. Chechev, Phys. Usp. 42, 563 (1999).

    Article  CAS  Google Scholar 

  39. H. V. Klapdor-Kleingrothaus and K. Zuber, Particle Astrophysics (CRC, Boca Raton, FL, 1997).

    Google Scholar 

  40. V. A. Bednyakov, Phys. Part. Nucl. 33, 473 (2002).

    CAS  Google Scholar 

  41. T. Rauscher, N. Dauphas, I. Dillmann, et al., Rep. Prog. Phys. 76, 066201 (2013); arXiv:1303.2666v3[astro-ph.SR].

    Article  CAS  Google Scholar 

  42. I. V. Kopytin, A. S. Kornev, and A. Khusein Imad, Vestn. Voronezh. Univ., Ser. Fiz. Mat., No. 2, 72 (2013).

    Google Scholar 

  43. B. M. Kuzhevskii, Nauka Rossii 4, 4 (2002).

    Google Scholar 

  44. M. V. Bezuglov, V. S. Malyshevskii, T. V. Malykhina, et al., Issled. Rossii, 589 (2011). http://zhurnal. ape.relarn.ru/articles/2011/046.pd.

    Google Scholar 

  45. E. A. Buraeva, M. G. Davydov, L. V. Zorina, V. S. Malyshevskii, and V. V. Stasov, At. Energy 102, 463 (2007).

    Article  CAS  Google Scholar 

  46. G. E. Kocharov, Soros. Obrazov. Zh., No. 3, 100 (1998).

    Google Scholar 

  47. E. A. Baranovskii, S. A. Musorina, and V. P. Tarashchuk, Bull. Crimean Astrophys. Observatory 109, 111 (2013).

    Article  Google Scholar 

  48. S. Timashev, Int. J. Astrophys. Space Sci. 2 (3), 33 (2014). http://www.sciencepublishinggroup.com/journal/ paperinfo.aspx?journalid=302&doi=10.11648/ j.ijass.20140203.11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Timashev.

Additional information

Original Russian Text © S.F. Timashev, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 11, pp. 1810–1822.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timashev, S.F. Radioactive decay as a forced nuclear chemical process: Phenomenology. Russ. J. Phys. Chem. 89, 2072–2083 (2015). https://doi.org/10.1134/S0036024415110199

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415110199

Keywords

Navigation