Skip to main content
Log in

Thermodynamics of the formation of intermediate complexes in the oxidation of oxalic acid by cerium(IV) and kinetics of their intramolecular redox decomposition

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The thermodynamic and kinetic characteristics of the intermediate cerium(IV) oxalate complex formed at the first stage of the oxidation of oxalic acid (H2Ox) by cerium(IV) are studied by spectrophotometry and pH potentiometry at an ionic strength I = 2, pH 0.4–1.1 of a sulfuric acid medium, and temperatures of 281.65–298.35 K. The composition, the form of organic ligands, the thermodynamic parameters of formation, and the kinetic parameters of intramolecular redox decomposition are established for this complex. A detailed scheme of the initial stages in the redox process that occurs in the Ce4+-SO 2-4 -H2Ox system is considered, and the law behind its rate and the reaction mechanism associated with this law are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Pelle, M. Wittmann, K. Lovric, et al., J. Phys. Chem. A 108, 5377 (2004).

    Article  CAS  Google Scholar 

  2. Z. Nosticzius, P. Stirling, and M. Wittmann, J. Phys. Chem. 89, 4914 (1985).

    Article  Google Scholar 

  3. R. P. Rastogi, Ch. Prem, M. K. Pandey, et al., J. Phys. Chem. A 109, 4562 (2005).

    Article  CAS  Google Scholar 

  4. P. Čevčik, D. Mišicák, and L. Adamciková, Chem. Pap. 60, 1 (2006).

    Article  Google Scholar 

  5. J. A. M. Pereira and R. B. Faria, J. Braz. Chem. Soc. 15, 976 (2004).

    Article  CAS  Google Scholar 

  6. S. Biswas, K. Mukherjee, D. C. Mukherjee, et al., J. Phys. Chem. A 105, 8857 (2001).

    Article  CAS  Google Scholar 

  7. B. Neumann, O. Steinbock, S. C. Müller, et al., J. Phys. Chem. A 101, 2743 (1997).

    Article  CAS  Google Scholar 

  8. P. Ruoff, J. Phys. Chem. A 106, 7075 (2002).

    Article  CAS  Google Scholar 

  9. P. O. Kvernberg, E. W. Hansen, B. Pedersen, et al., J. Phys. Chem. A 101, 2327 (1997).

    Article  CAS  Google Scholar 

  10. Y.-O. Yu and J.-J. Jwo, J. Chin. Chem. Soc. 47, 433 (2000).

    Article  CAS  Google Scholar 

  11. B. P. Belousov, in Oscillations and Traveling Waves in Chemical Systems, Ed. by R. G. Field and M. Burger (Interscience, New York, 1985), p. 605.

  12. A. M. Zhabotinsky, in Oscillations and Traveling Waves in Chemical Systems, Ed. by R. G. Field and M. Burger (Interscience, New York, 1985), p. 379.

  13. G. T. Kasperek and T. C. Bruice, Inorg. Chem. 10, 382 (1971).

    Article  Google Scholar 

  14. R. J. Field, E. Körös, and R. M. Noyes, J. Am. Chem. Soc. 94, 8649 (1972).

    Article  CAS  Google Scholar 

  15. L. Györgyi, T. Turnäyi, and R. J. Field, J. Phys. Chem. 94, 7162 (1990).

    Article  Google Scholar 

  16. A. F. Taylor, Progr. React. Kinet. Mech. 27, 247 (2002).

    Article  CAS  Google Scholar 

  17. S. G. Sobel, H. M. Hastings, and R. J. Field, J. Phys. Chem. A 110, 5 (2006).

    Article  CAS  Google Scholar 

  18. X. Lu, Y. Zhao, N. Ren, et al., Progr. Chem. 24, 709 (2012).

    CAS  Google Scholar 

  19. O. Voskresenskaya and N. A. Skorik, Russ. J. Phys. Chem. A 83, 945 (2009).

    Article  CAS  Google Scholar 

  20. O. Voskresenskaya, Kinetic and Thermodynamic Stability of Cerium(IV) Complexes with a Series of Aliphatic Organic Compounds (Nova Science Publ., New York, 2013).

    Google Scholar 

  21. O. O. Voskresenskaya and N. A. Skorik, Thermodynamic and Kinetic Aspects of the Formation and Redox Decomposition of Cerium(IV) Complexes with a Series of Hydroxyl-containing Organic Ligands (NTL, Tomsk, 2011) [in Russian].

    Google Scholar 

  22. V. H. Dodson and A. Y. Blach, J. Am. Chem. Soc. 79, 1325 (1957).

    Google Scholar 

  23. L. J. Csanyi and F. Szoke, Z. Anal. Chem. 175, 187 (1960).

    Article  CAS  Google Scholar 

  24. Y. R. Rao and A. R. Murty, Z. Anal. Chem. 195, 406 (1963).

    Article  CAS  Google Scholar 

  25. S. Ross and C. Swain, Am. Chem. Soc. 68, 957 (1964).

    Google Scholar 

  26. T. S. Rao and R. V. Shukla, React. Kinet. Catal. Lett. 39, 373 (1989).

    Article  CAS  Google Scholar 

  27. Y. A. El-Tantawi and G. A. Rechnitz, Anal. Chem. 36, 1774 (1964).

    Article  Google Scholar 

  28. A. A. Luzan and K. B. Yatsimirskii, Zh. Neorg. Khim. 10, 2268 (1965).

    Google Scholar 

  29. A. A. Luzan and K. B. Yatsimirskii, Zh. Neorg. Khim. 13, 3216 (1968).

    CAS  Google Scholar 

  30. P. S. Perminov, S. T. Fedorov, V. F. Matyukha, et al., Zh. Neorg. Khim. 13, 651 (1968).

    Google Scholar 

  31. I. P. Sokolovskaya and V. I. Malkova, Sib. Khim. Zh., No. 5, 51 (1992).

    Google Scholar 

  32. J. A. van den Berg, E. L. G. Breet, and J. J. Pienaar, S. Afr. J. Chem. 53, 119 (2000).

    Google Scholar 

  33. G. P. Vakhramova, N. I. Pechurova, and V. I. Spitsyn, Vestn. Mosk. Univ., No. 6, 682 (1974).

    Google Scholar 

  34. G. P. Vakhramova and N. I. Pechurova, Theory and Practice of Competitive Complex Formation in Solution (Udmurt. Gos. Univ., Izhevsk, 1988), p. 43 [in Russian].

    Google Scholar 

  35. I. M. Kolthof et al., Volumetric Analysis (Interscience, New York, 1957).

    Google Scholar 

  36. N. A. Kostromina, V. N. Kumok, and N. A. Skorik, Chemistry of Coordination Compounds (Vysshaya Shkola, Moscow, 1990) [in Russian].

    Google Scholar 

  37. V. N. Kumok and N. A. Skorik, Laboratory Manual on Complex Compounds Chemistry (Tomsk. Gos. Univ., Tomsk, 1983) [in Russian].

    Google Scholar 

  38. E. G. Jones and F. G. Soper, J. Chem. Soc., No. 6, 802 (1935).

    Article  Google Scholar 

  39. L. V. Trubacheva and N. I. Pechurova, Zh. Neorg. Khim. 26, 3254 (1981).

    CAS  Google Scholar 

  40. T. G. Hardwick and E. Robertson, Can. J. Chem. 29, 828 (1955).

    Article  Google Scholar 

  41. T. W. Newton and G. M. Arcand, J. Am. Chem. Soc. 75, 2449 (1953).

    Article  CAS  Google Scholar 

  42. N. A. Skorik and E. B. Chernov, Computer Computations in Complex Compounds Chemistry (Tomsk. Gos. Univ., Tomsk, 2009) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Voskresenskaya.

Additional information

Original Russian Text © O.O. Voskresenskaya, N.A. Skorik, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 10, pp. 1619–1626.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskresenskaya, O.O., Skorik, N.A. Thermodynamics of the formation of intermediate complexes in the oxidation of oxalic acid by cerium(IV) and kinetics of their intramolecular redox decomposition. Russ. J. Phys. Chem. 89, 1821–1827 (2015). https://doi.org/10.1134/S0036024415100337

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415100337

Keywords

Navigation