Skip to main content
Log in

Ultrasonic activation of oxidation of azo dyes in aqueous solutions

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The main tendencies in the oxidation of the azo dye methyl orange during high-frequency ultrasonic treatment in aqueous solutions were studied. It was proven experimentally that the hydroxyl radicals formed during water sonolysis play the critical role in this process. A synergy effect was observed when the combined method for oxidation of methyl orange in the presence of potassium persulfate was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Margulis, Sonochemistry and Cavitation (Vyssh. Shkola, Moscow, 1984; Taylor Francis, London, 1995).

    Google Scholar 

  2. M. G. Sulman, Russ. Chem. Rev. 69, 165 (2000).

    Article  CAS  Google Scholar 

  3. D. H. Bremner, A. E. Burgess, and R. Chand, Curr. Org. Chem. 15, 168 (2011).

    Article  CAS  Google Scholar 

  4. V. V. Goncharuk, V. V. Malyarenko, and V. A. Yaremenko, J. Water Chem. Technol. 30, 137 (2008).

    Article  Google Scholar 

  5. Y. G. Adewuyi, Ind. Eng. Chem. Res. 40, 4681 (2001).

    Article  CAS  Google Scholar 

  6. Z. Wu and B. Ondruschka, J. Phys. Chem. A 109, 6521 (2005).

    Article  CAS  Google Scholar 

  7. R. Chanda, N. H. Inceb, P. R. Gogatec, and D. H. Bremnera, Sep. Purif. Technol. 67, 103 (2009).

    Article  Google Scholar 

  8. N. H. Ince, G. Tezcanli, R. K. Belen, and I. G. Apikyan, Appl. Catal. B: Environ. 29, 167 (2001).

    Article  CAS  Google Scholar 

  9. P. Chowdhury and T. Viraraghavan, Sci. Total Environ. 407, 2474 (2009).

    Article  CAS  Google Scholar 

  10. K. Okitsu, K. Iwasaki, Y. Yobiko, et al., Ultrason. Sonochem. 12, 255 (2005).

    Article  CAS  Google Scholar 

  11. K. Thangavaddivel, G. Owens, and K. Okitsu, RSC Adv. 3, 23370 (2013).

    Article  Google Scholar 

  12. H. Ghadbane and O. Hamdaoui, Ultrason. Sonochem. 16, 593 (2009).

    Article  Google Scholar 

  13. H. Hao, Y. Chen, M. Wu, et al., Ultrason. Sonochem. 11, 43 (2004).

    Article  CAS  Google Scholar 

  14. J.-L. Wu, J. Lifka, and B. Ondrushka, Chem. Eng. Technol. 29, 610 (2006).

    Article  CAS  Google Scholar 

  15. I. Grcic, D. Vujevic, and N. Koprivanac, Chem. Eng. J. 157, 35 (2010).

    Article  CAS  Google Scholar 

  16. Y. Deng and C. M. Ezyske, Water Res. 45, 6189 (2011).

    Article  CAS  Google Scholar 

  17. Ch. Qi, X. Liu, Ch. Lin, et al., Chem. Eng. J. 249, 6 (2014).

    Article  CAS  Google Scholar 

  18. C.-W. Wang and Ch. Liang, Chem. Eng. J. 254, 472 (2014).

    Article  CAS  Google Scholar 

  19. H. Li, J. Guo, L. Yang, and Y. Lan, Separ. Purif. Technol. 132, 168 (2014).

    Article  CAS  Google Scholar 

  20. J. Deng, Y. Shao, N. Gao, et al., Chem. Eng. J. 228, 765 (2013).

    Article  CAS  Google Scholar 

  21. RF Patent No. 145943 (2014).

  22. K. Okitsu, K. Iwasaki, Y. Yobiko, et al., Ultrason. Sonochem. 12, 255 (2005).

    Article  CAS  Google Scholar 

  23. J. M. Joseph, H. Destaillats, H.-M. Hung, and M. R. Hoffmann, J. Phys. Chem. A 104, 301 (2000).

    Article  CAS  Google Scholar 

  24. K. Thangavaddivel, G. Owens, P. J. Lesniewski, and K. Okitsu, J. Environ. Chem. Eng. 1, 275 (2013).

    Article  Google Scholar 

  25. Y. He, F. Griser, and M. Ashokkumar, Ultrason. Sonochem. 18, 974 (2011).

    Article  CAS  Google Scholar 

  26. H. Destaillats, A. J. Colussi, J. M. Joseph, and M. R. Hoffmann, J. Phys. Chem. A 104, 8930 (2000).

    Article  CAS  Google Scholar 

  27. H. Zhang, L. Duan, and D. Zhang, J. Hazard. Mater. B 138, 53 (2006).

    Article  CAS  Google Scholar 

  28. J. Wang, T. Ma, Zh. Zhang, et al., Desalination 195, 294 (2006).

    Article  CAS  Google Scholar 

  29. A. B. Isaev, F. G. Gasanova, N. S. Shabanov, and K. M. Giraev, Russ. J. Phys. Chem. A 88, 1798 (2014).

    Article  CAS  Google Scholar 

  30. D. G. Aseev and A. A. Batoeva, Zh. Fiz. Khim. 89 (2015, in press).

    Google Scholar 

  31. H. Ghodbane and O. Hamdaoui, Ultrason. Sonochem. 16, 593 (2009).

    Article  CAS  Google Scholar 

  32. S.-N. Nam, S.-K. Han, J.-W. Kang, and H. Choi, Ultrason. Sonochem. 10, 139 (2003).

    Article  CAS  Google Scholar 

  33. A. A. Batoeva and M. R. Sizykh, Russ. J. Appl. Chem. 85, 76 (2012).

    Article  CAS  Google Scholar 

  34. A. D. Visscher and H. V. Langenhove, Ultrason. Sonochem. 5, 87 (1998).

    Article  Google Scholar 

  35. H. Hao, Y. Chen, M. Wu, et al., Ultrason. Sonochem. 11, 43 (2004).

    Article  CAS  Google Scholar 

  36. M. Inoue, F. Okoda, A. Sakurai, and M. Sakakibara, Ultrason. Sonochem. 13, 313 (2006).

    Article  CAS  Google Scholar 

  37. G. G. Matafonova and V. B. Batoev, Voda: Khim. Ekol., No. 9, 87 (2013).

    Google Scholar 

  38. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Batoeva.

Additional information

Original Russian Text © M.R. Sizykh, A.A. Batoeva, D.G. Aseev, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 10, pp. 1583–1587.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizykh, M.R., Batoeva, A.A. & Aseev, D.G. Ultrasonic activation of oxidation of azo dyes in aqueous solutions. Russ. J. Phys. Chem. 89, 1785–1789 (2015). https://doi.org/10.1134/S0036024415100295

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415100295

Keywords

Navigation